

1	Seasonal Carbonate Chemistry Variability in Marine Surface Waters
2	of the Pacific Northwest
3	
4	Andrea J. Fassbender ^{1,2,*} , Simone R. Alin ² , Richard A. Feely ² , Adrienne J. Sutton ² , Jan A.
5	Newton ³ , Christopher Krembs ⁴ , Julia Bos ⁴ , Mya Keyzers ⁴ , Allan Devol ⁵ , Wendi Ruef ⁵ , and Greg
6	Pelletier ⁴
7	
8	¹ Monterey Bay Aquarium Research Institute, Moss Landing, CA 95039, USA
9	² Pacific Marine Environmental Laboratory, National Oceanic and Atmospheric Administration,
10	Seattle, WA 98115, USA
11	³ Applied Physics Laboratory, University of Washington, Seattle, WA 98105, USA
12	⁴ Washington State Department of Ecology, Olympia, WA 98504, USA
13	⁵ School of Oceanography, University of Washington, Seattle, WA 98195, USA
14	*Corresponding author: <u>fassbender@mbari.org</u>
15	
16	Abstract
17	Fingerprinting ocean acidification (OA) in U.S. West Coast waters is extremely challenging
18	due to the large magnitude of natural carbonate chemistry variations common to these regions.
19	Additionally, quantifying a change requires information about the initial conditions, which is not
20	readily available in most coastal systems. In an effort to address this issue, we have collated high-
21	quality, publicly-available data to characterize the modern seasonal carbonate chemistry variability
22	in marine surface waters of the Pacific Northwest. Underway ship data from Version 4 of the
23	Surface Ocean CO ₂ Atlas, discrete observations from various sampling platforms, and sustained
24	measurements from regional moorings were incorporated to provide ~100,000 inorganic carbon
25	observations from which modern seasonal cycles were estimated. Underway ship and discrete
26	observations were merged and gridded to a $0.1^{\circ} \times 0.1^{\circ}$ scale. Eight unique regions were identified
27	and seasonal cycles from grid cells within each region were averaged. Data from nine surface
28	moorings were also compiled and used to develop robust estimates of mean seasonal cycles for
29	comparison with the eight regions. This manuscript describes our methodology and the resulting
30	mean seasonal cycles for multiple OA metrics in an effort to provide large-scale, environmental
31	context for ongoing research, adaptation, and management efforts throughout the Pacific

32	Northwest. Major findings include the identification of unique chemical characteristics across the
33	study domain. There is a clear increase in the ratio of dissolved inorganic carbon (DIC) to total
34	alkalinity (TA) and in the seasonal cycle amplitude of carbonate system parameters when moving
35	from the open ocean North Pacific into the Salish Sea. Due to the logarithmic nature of the pH
36	scale $(\mathbf{pH} = -\log_{10}[\mathbf{H}^+])$ where $[\mathbf{H}^+]$ is the hydrogen ion concentration) lower annual mean \mathbf{pH}
27	searce (pri - logio(ri), where (ri) is the hydrogen for concentration, lower annual mean pri
3/	values (associated with elevated DIC:TA) coupled with larger magnitude seasonal pH cycles
38	results in seasonal $[H^+]$ ranges that are ~ 27 times larger in Hood Canal than in the neighboring
39	North Pacific open ocean. Organisms living in the Salish Sea are thus exposed to much larger
40	seasonal acidity changes than those living in nearby open ocean waters. Additionally, our findings
41	suggest that lower buffering capacities in the Salish Sea make these waters less efficient at
42	absorbing anthropogenic carbon than open ocean waters at the same latitude.
43	
44	All data used in this analysis are publically available at the following websites:
45	• Surface Ocean CO ₂ Atlas Version 4 coastal data,
46	https://doi.pangaea.de/10.1594/PANGAEA.866856;
47	National Oceanic and Atmospheric Administration (NOAA) West Coast Ocean Acidification
48	cruise data, 10.3334/CDIAC/otg.CLIVAR NACP West Coast Cruise 2007;
49	10.3334/CDIAC/OTG.COAST_WCOA2011; 10.3334/CDIAC/OTG.COAST_WCOA2012;
50	10.7289/V5C53HXP;
51	• University of Washington (UW) and Washington Ocean Acidification Center cruise data,
52	https://doi.org/10.5281/zenodo.1184657;
53	• Washington State Department of Ecology seaplane data,
54	https://doi.org/10.5281/zenodo.1184657;
55	• NOAA Moored Autonomous pCO_2 (MAPCO2) Buoy data,
56	https://doi.org/10.3334/CDIAC/OTG.TSM_LAPUSH_125W_48N;
57	https://doi.org/10.3334/CDIAC/OTG.TSM_WA_125W_47N;
58	https://doi.org/10.3334/CDIAC/OTG.TSM_DABOB_122W_478N;
59	https://doi.org/10.3334/CDIAC/OTG.TSM_TWANOH_123W_47N;
60	UW Oceanic Remote Chemical/Optical Analyzer Buoy data,
61	https://doi.org/10.5281/zenodo.1184657;
62	NOAA Pacific Coast Ocean Observing System cruise data,
63	https://doi.org/10.5281/zenodo.1184657.
64	
65	1. Introduction
66	Changes in seawater chemistry caused by the continuous absorption of anthropogenic carbon

67 dioxide (CO₂) from the atmosphere are altering the marine environment in ways that are often

68 invisible to the human eye but may resonate throughout coastal communities in the form of altered

69 ecosystem health and economic vulnerabilities associated with food security (e.g., Adelsman and 70 Binder, 2012; Barton et al., 2015; Ekstrom et al., 2015; Somero et al., 2016; Wong et al., 2014). 71 Rising CO₂ partial pressures (pCO_2) and hydrogen ion concentrations ([H⁺]), commonly referred 72 to as "Ocean Acidification" (OA; Caldeira and Wickett, 2003; Doney et al., 2009), have been 73 observed throughout the global open ocean (e.g., Bates et al., 2014; Brewer, 1978; Feely et al., 74 2004, 2009; Sabine, 2004). Yet, in the coastal zone it remains challenging to attribute carbonate 75 chemistry changes to anthropogenic factors due to the much larger and more sporadic natural 76 chemical variations that take place near shore (Borges, 2011; Evans et al., 2011; Fassbender et al., 77 2016; Feely et al., 2016; Harris, 2013; Takeshita et al., 2015; Waldbusser and Salisbury, 2014). 78 Unlike the open ocean, the coastal zone is complicated by land-sea interactions (e.g., river input, 79 upwelling, point source pollution, as well as tidal and estuarine mixing) that influence water and 80 chemical residence times as well as carbon transformation processes, and these may also be 81 changing over time due to human activities (Bauer et al., 2013; Cai et al., 2011; Feely et al., 2016; 82 Raymond et al., 2008; Raymond and Cole, 2003; Regnier et al., 2013). Baseline observations 83 capturing the range of modern variability in the coastal ocean will therefore be required to 84 accurately fingerprint the ongoing carbonate system changes associated with human perturbations 85 to the global climate system.

86

87 Washington State has an expansive coastline where a diversity of land-sea interfaces results in 88 regional patchiness, requiring local assessments of OA that cannot be inferred from the broader 89 North Pacific Ocean (e.g., Feely et al., 2010). Monthly pH observations have been collected 90 throughout Washington waters since 1989 by the Washington State Department of Ecology (ECY) 91 using electrode-based pH measurements with known accuracy and precision limitations. The use 92 of a consistent method has allowed ECY to perform intensive quality assurance (Bos et al., 2016), 93 leading to the detection of interannual variability and secular trends in pH over the data record. 94 Still, great uncertainty remains in how other carbonate system parameters have changed 95 throughout the region. In 2006, the National Oceanic and Atmospheric Administration (NOAA) 96 and the University of Washington (UW) began sustained high-frequency (3-hour) observations of 97 carbonate chemistry in Washington waters with the deployment of an autonomous CO₂ sensor on 98 a surface mooring. Three additional surface moorings have been outfitted with CO₂ sensors since 99 2009 (Alin et al., 2015). Routine discrete sampling of two carbonate system parameters conducted

100 by NOAA and regional partners started in 2007 (Feely et al., 2008, 2010, 2016), and the 101 deployment of autonomous pH sensors on regional surface moorings was initiated by the UW and 102 NOAA in 2010. In addition to these targeted carbon observations, CO₂ measurements collected on 103 ships of opportunity while they are underway have amassed throughout the region since the 1970s 104 (Bakker et al., 2016). Altogether these data, in addition to measurements made by a large 105 community of agencies, institutions, and stakeholders, constitute an impressive network of 106 observations that makes Washington one of the most data-rich states to tackle research questions 107 associated with OA in the coastal zone (Alin et al., 2015).

108

109 Building upon these observing efforts, we have characterized the average seasonal cycles of 110 numerous carbonate system parameters throughout Pacific Northwest marine surface waters. 111 Comprised of publicly-available, high-quality data, the resulting data products are meant to 112 provide large-scale environmental context for OA research (Andersson and MacKenzie, 2012; 113 Hofmann et al., 2011; McElhany and Busch, 2013; Takeshita et al., 2015; Wahl et al., 2016), 114 adaptation and management strategy development (Boehm et al., 2015; Ekstrom et al., 2015), and 115 water quality assessment (Bednaršek et al., 2017; Weisberg et al., 2016). Here we describe our 116 methodology and the resulting carbonate chemistry seasonal cycles, reproduced in the netCDF 117 format as supplementary material to this article (contact the author for similar information in the 118 MATLAB format).

119

120 2. Data sources

121 2.1. Surface Ocean CO₂ Atlas version 4

122 The Surface Ocean CO₂ Atlas (SOCAT; <u>http://www.socat.info/</u>) is the result of a data synthesis 123 activity carried out by >100 members of the carbon research community who compile and quality 124 control sea surface (upper ~ 5 m) measurements of CO₂ fugacity (fCO₂) made across the globe 125 (Bakker et al., 2016; Pfeil et al., 2013; Sabine et al., 2013), where fCO₂ is similar to pCO₂ but takes 126 into account the non-ideal nature of the gas (Dickson et al., 2007). The SOCAT database is updated 127 annually to include the most recent observations as well as historical data files that have been 128 discovered and validated. For this analysis, SOCAT version 4 (SOCAT-v4) fCO₂ data collected 129 within 45.5° N to 49° N and 127° W to 122° W (Fig. 1a) were downloaded from the coastal 130 SOCAT database (Table 1) along with the accompanying sea surface salinity (SSS) and sea

131 surface temperature (SST) observations. World Ocean Circulation Experiment quality control 132 flags of 2 ("good") and SOCAT metadata flags of A through D were applied such that the fCO_2 133 observations included have an accuracy of 5 µatm or better (Bakker et al., 2016). Mooring 134 observations found within the study region were removed from the SOCAT-v4 dataset and are 135 treated separately. The resultant dataset includes \sim 57,000 quality-controlled fCO₂ observations 136 collected between 1976 and 2015 (Table 2). Because these observations span four decades, a 137 seawater anthropogenic pCO_2 trend of 1.5 µatm yr⁻¹ was used to normalize the fCO_2 observations 138 to the reference year 2010, following *Takahashi et al.*, [2009, 2014]. Although a trend in pCO₂ 139 rather than fCO_2 was used, the difference in trend between the two parameters is negligible over a 140 40-year period (~0.006 µatm yr⁻¹), resulting in a 0.2 µatm absolute difference between parameters.

141

142 2.2. Discrete carbon data

143 Discrete samples collected from the top 10 m of water during recurring oceanographic cruises 144 conducted between May 2007 and May 2015 near Washington State were compiled for this 145 analysis (Fig. 1a). These cruises include: NOAA Ocean Acidification Program (OAP) West Coast 146 Ocean Acidification (WCOA) cruises; Pacific Coast Ocean Observing System (PacOOS) cruises; 147 and UW cruises associated with the Puget Sound Regional Synthesis Model (PRISM) program, 148 Washington Ocean Acidification Center (WOAC), and Northwest Association of Networked 149 Ocean Observing Systems (NANOOS) as well as its Chá bă mooring. Additionally, ECY collected discrete water samples via seaplane from ~5 m depth during 2014 and 2015 (Keyzers, 2014, 2016). 150 151 Each data subset used herein can be accessed online using information from Table 1.

152

153 Discrete samples with quality control flags of 2 or 6 (2 = good data, 6 = replicate samples) 154 were included, yielding ~900 observations. Table 2 provides a detailed list of the cruises, number 155 of dissolved inorganic carbon (DIC), total alkalinity (TA), total pH (pHT), fCO2, salinity (S), and 156 temperature (T) observations relied on from each cruise. Information about the silicate and 157 phosphate observations that were also used in this analysis can be found in Appendix A. All of 158 the DIC and TA bottle samples were analyzed at the Pacific Marine Environmental Laboratory via 159 coulometric (Dickson et al., 2007; Johnson et al., 1998) and potentiometric titration (Dickson et 160 al., 2007; Millero et al., 1993), respectively. For all cruises, the accuracy of DIC and TA relative 161 to Certified Reference Materials (Dickson et al., 2007) is ±0.1 % of the measurement value and

- 162 the precision is < ± 0.1 % for TA and ~1 µmol kg⁻¹ for DIC. This is equal to an accuracy of
- approximately 2 μ mol kg⁻¹ for both parameters in Washington surface waters. For simplicity, we
- 164 use 2 μ mol kg⁻¹ as the total uncertainty for DIC and TA samples and discuss the role of
- 165 measurement error further in Sect. 4.2. pH_T measurements were also made during the 2011 and
- 166 2013 WCOA cruises (**Table 2**). These samples were analyzed by spectrophotometry (Byrne et al.,
- 167 2010; Liu et al., 2011) and have measurement accuracies of 0.004.
- 168

Figure 1: (a) Locations of coastal SOCAT-v4 *f*CO₂ observations, discrete sample stations, and
moorings. The moorings are labeled with two-letter acronyms as follows: Bellingham Bay (BB),
Carr Inlet (CI), Dabob Bay (DB), Chá bă (CB), Point Wells (PW), Cape Elizabeth (CE), North
Buoy (NB), Hoodsport (HS), and Twanoh (TW). (b) Intervals of available sensor data from each
of the nine moorings. All moorings include salinity (SSS) and temperature (SST) observations
(blue). Some moorings also include pH (gray) and/or *f*CO₂ (pink) observations.

Table 1. Data attribution table listing the SOCAT and discrete datasets (with observing periods)
 incorporated into the analysis. Data curating organization URLs and data DOIs are provided.

178

DISCRETE DATA	Obs. Period	Data Curating Organization URL	Data DOI
SOCAT-v41	1970- 2015	https://doi.pangaea.de/10.1594/PANGAEA.866876	https://doi.pangaea.de/10.1594/PANGA EA.866856
NOAA WCOA	05/2007	https://www.nodc.noaa.gov/ocads/data/0083685.xml	10.3334/CDIAC/otg.CLIVAR NACP West Coast Cruise 2007
UW PRISM*	02/2008	http://nvs.nanoos.org/CruiseSalish	https://doi.org/10.5281/zenodo.1184657
UW PRISM/EPA*	08/2008	http://nvs.nanoos.org/CruiseSalish	https://doi.org/10.5281/zenodo.1184657
PacOOS*	08/2009		https://doi.org/10.5281/zenodo.1184657
UW PRISM*	09/2009	http://nvs.nanoos.org/CruiseSalish	https://doi.org/10.5281/zenodo.1184657
PacOOS*	05/2010		https://doi.org/10.5281/zenodo.1184657
PacOOS*	08/2010		https://doi.org/10.5281/zenodo.1184657
UW PRISM*	11/2010	http://nvs.nanoos.org/CruiseSalish	https://doi.org/10.5281/zenodo.1184657
UW/Chá bă*	05/2011	http://nvs.nanoos.org/CruiseSalish	https://doi.org/10.5281/zenodo.1184657
NOAA WCOA	08/2011	https://www.nodc.noaa.gov/ocads/data/0157458.xml	10.3334/CDIAC/OTG.COAST_WCOA2 011
UW PRISM*	10/2011	http://nvs.nanoos.org/CruiseSalish	https://doi.org/10.5281/zenodo.1184657
UW/NANOOS*	05/2012	http://nvs.nanoos.org/CruiseSalish	https://doi.org/10.5281/zenodo.1184657
NOAA WCOA	09/2012	https://www.nodc.noaa.gov/ocads/data/0157445.xml	<u>10.3334/CDIAC/OTG.COAST_WCOA2</u> 012
UW/Chá bă*	01/2013	http://nvs.nanoos.org/CruiseSalish	https://doi.org/10.5281/zenodo.1184657
UW/NANOOS*	04/2013	http://nvs.nanoos.org/CruiseSalish	https://doi.org/10.5281/zenodo.1184657
NOAA WCOA	08/2013	https://www.nodc.noaa.gov/oceanacidification/data/0132 082.xml	10.7289/V5C53HXP
UW/NANOOS*	09/2013	http://nvs.nanoos.org/CruiseSalish	https://doi.org/10.5281/zenodo.1184657
UW/NANOOS*	06/2014	http://nvs.nanoos.org/CruiseSalish	https://doi.org/10.5281/zenodo.1184657
ECY	06/2014	https://fortress.wa.gov/ecy/publications/SummaryPages/ 1603032.html	https://doi.org/10.5281/zenodo.1184657
WOAC*	07/2014	http://nvs.nanoos.org/CruiseSalish	https://doi.org/10.5281/zenodo.1184657
ECY	07/2014	https://fortress.wa.gov/ecy/publications/SummaryPages/ 1603032.html	https://doi.org/10.5281/zenodo.1184657
ECY	08/2014	https://fortress.wa.gov/ecy/publications/SummaryPages/ 1603032.html	https://doi.org/10.5281/zenodo.1184657
WOAC*	09/2014	http://nvs.nanoos.org/CruiseSalish	https://doi.org/10.5281/zenodo.1184657
ECY	09/2014	https://fortress.wa.gov/ecy/publications/SummaryPages/ 1603032.html	https://doi.org/10.5281/zenodo.1184657
UW/Chá bă*	10/2014	http://nvs.nanoos.org/CruiseSalish	https://doi.org/10.5281/zenodo.1184657
ECY	10/2014	https://fortress.wa.gov/ecy/publications/SummaryPages/ 1603032.html	https://doi.org/10.5281/zenodo.1184657
ECY	11/2014	https://fortress.wa.gov/ecy/publications/SummaryPages/ 1603032.html	https://doi.org/10.5281/zenodo.1184657
ECY	01/2015	https://fortress.wa.gov/ecy/publications/SummaryPages/ 1603032.html	https://doi.org/10.5281/zenodo.1184657
ECY	02/2015	https://fortress.wa.gov/ecy/publications/SummaryPages/ 1603032.html	https://doi.org/10.5281/zenodo.1184657
ECY	03/2015	https://fortress.wa.gov/ecy/publications/SummaryPages/ 1603032.html	https://doi.org/10.5281/zenodo.1184657
ECY	04/2015	https://fortress.wa.gov/ecy/publications/SummaryPages/ 1603032.html	https://doi.org/10.5281/zenodo.1184657
ECY	05/2015	https://fortress.wa.gov/ecy/publications/SummaryPages/ 1603032.html	https://doi.org/10.5281/zenodo.1184657

179 ¹The coastal subset of SOCAT-v4 data can be easily accessed here: <u>https://www.socat.info/index.php/version-4/</u>

180 *Full dataset in preparation for submission to a long-term data repository.

182 **Table 2**. SOCAT and discrete datasets incorporated into the analysis. The observing period and 183 the number of fCO_2 , DIC, TA, pH, S, and T values that were observed (Obs.), calculated (Calc.),

184 and estimated (Est.) for each cruise are provided.

185

DISCRETE	Obs.	fC	02	Ľ	IC		ГА	p	HT	S	Т
DATA	Period	Obs.	Calc.	Obs.	Calc.	Obs.	Est.	Obs.	Calc.	Obs.	Obs.
SOCAT-v4	1976-2015	57,425	0	0	52,521	0	52,524	0	52,521	52,528	57,422
NOAA WCOA	05/2007	0	11	11	0	11	0	0	11	11	11
UW PRISM	02/2008	0	80	80	0	75	5	0	80	80	80
UW PRISM/EPA	08/2008	0	122	122	0	120	2	0	122	122	122
PacOOS	08/2009	0	8	8	0	8	0	0	8	8	8
UW PRISM	09/2009	0	38	38	0	38	0	0	38	38	38
PacOOS	05/2010	0	13	13	0	13	0	0	13	13	13
PacOOS	08/2010	0	22	22	0	22	0	0	22	22	22
UW PRISM	11/2010	0	40	40	0	37	3	0	40	40	40
UW/Chá bă	05/2011	0	1	1	0	1	0	0	1	1	1
NOAA WCOA	08/2011	0	37	37	0	32	5	32	5	37	37
UW PRISM	10/2011	0	60	60	0	60	0	0	60	60	60
UW/NANOOS	05/2012	0	4	4	0	4	0	0	4	4	4
NOAA WCOA	09/2012	0	43	43	0	39	3	0	43	43	43
UW/Chá bă	01/2013	0	2	2	0	2	0	0	2	2	2
UW/NANOOS	04/2013	0	19	19	0	18	1	0	19	19	19
NOAA WCOA	08/2013	0	59	59	0	47	9	45	14	59	59
UW/NANOOS	09/2013	0	19	19	0	19	0	0	19	19	19
UW/NANOOS	06/2014	0	10	10	0	10	0	0	10	10	10
ECY	06/2014	0	17	17	0	17	0	0	17	17	17
WOAC	07/2014	0	68	68	0	68	0	0	68	68	68
ECY	07/2014	0	12	12	0	12	0	0	12	12	12
ECY	08/2014	0	18	18	0	18	0	0	18	18	18
WOAC	09/2014	0	64	64	0	64	0	0	64	64	64
ECY	09/2014	0	14	14	0	14	0	0	14	14	14
UW/Chá bă	10/2014	0	19	19	0	19	0	0	19	19	19
ECY	10/2014	0	9	9	0	9	0	0	9	9	9
ECY	11/2014	0	9	9	0	9	0	0	9	9	9
ECY	01/2015	0	13	13	0	13	0	0	13	13	13
ECY	02/2015	0	15	15	0	15	0	0	15	15	15
ECY	03/2015	0	20	20	0	20	0	0	20	20	20
ECY	04/2015	0	15	15	0	15	0	0	15	15	15
ECY	05/2015	0	6	6	0	6	0	0	6	6	6
TOTAL		57,425	887	887	52,521	855	52,552	77	53,331	53,415	58,309

¹⁸⁶

187 2.3. Mooring carbon data

In addition to discrete data, time-series observations from nine surface moorings in the region are included in the analysis (**Fig. 1a**). These moorings are maintained by NOAA, UW, WOAC, and NANOOS. Moored time-series data can be accessed online using information from **Table 3**. All of the moorings carry sensors that measure SST and SSS, and most include sensors for surface

192 ocean fCO_2 or pH_T, while the Chá bă mooring measures both of these carbon parameters (Fig. 1b). 193 Presently, quality-controlled observations from the moorings range from January 2005 through 194 January 2017, with the longest carbon record from the Cape Elizabeth mooring that started in 2006. 195 Assuming the same anthropogenic fCO_2 trend of 1.5 µatm yr⁻¹ that was used to normalize the 196 SOCAT-v4 data (Takahashi et al., 2009, 2014), the Cape Elizabeth time series may include a ~12 197 μ atm anthropogenic increase in the mean fCO₂ over the 8-year record. This is much smaller than 198 the potential $\sim 60 \,\mu$ atm increase over the $\sim 40 \,\mu$ year SOCAT-v4 record. Additionally, since all other 199 moorings have much shorter carbon time series (some with pH rather than fCO_2 records), we do 200 not remove the anthropogenic fCO_2 trend from the mooring data.

201

202 The Chá bă, Cape Elizabeth, Dabob Bay, and Twanoh surface moorings each carry a Moored 203 Autonomous pCO_2 (MAPCO₂) system that makes 3-hour measurements of surface air and sea 204 pCO_2 with an accuracy of $\leq 2 \mu$ atm (Sutton et al., 2014). The Chá bă mooring is also outfitted with 205 a Sunburst SAMI pH sensor with reported field accuracy of 0.018, and a Sea-Bird Electronics 206 (SBE) 16plus V2 Sea-CAT conductivity-temperature-depth (CTD) sensor with SST accuracy < 207 0.01 and SSS accuracy < 0.05, as described in Sutton et al. (2016). The Cape Elizabeth mooring 208 carries an SBE 37 MicroCAT CTD sensor with SST accuracy < 0.01 and SSS accuracy < 0.05. 209 These sensors are programed to sample every 3 hours in tandem with the MAPCO2 system. The 210 other seven moorings, Oceanic Remote Chemical/Optical Analyzer (ORCA) buoys (Dunne et al., 211 2002), are equipped with profiling sensors that include SBE19 or 19Plus CTD sensors (SST 212 accuracy of 0.005 and SSS accuracy of 0.005), SBE 43 dissolved oxygen sensors, and WETLabs 213 WETStar or FLNTUS chlorophyll fluorometers. Temperature and salinity observations collected 214 from the top 3 m of the water column were binned and averaged to serve as SST and SSS for this 215 analysis. The Carr Inlet and Bellingham Bay surface buoys also carry Satlantic SeaFET pH sensors 216 with a reported accuracy of ± 0.05 pH. All raw SeaFET measurements were converted to pH using 217 custom code adapted from Martz et al. (2015) and equations from Bresnahan et al. (2014). ORCA 218 mooring data were quality controlled according to protocols outlined in the Quality Assurance 219 Project Plan (http://nwem.ocean.washington.edu/ORCA_QAPP.pdf; Newton and Devol, 2012). 220 All sensors on the surface buoys sample the water column at ~1 m depth, excluding the profiling 221 CTDs. Details about the number of observations collected at each mooring location are provided 222 in **Table 4**. It is important to note that many of the moored time series include significant data gaps

- 223 and/or times when fCO_2 and pH_T measurements are not available (Fig. 1b). The observing periods
- 224 listed in **Table 3** represent the time range over which quality-controlled, *in situ* observations exist
- 225 at the mooring site at the time of this manuscript.
- 226

227 Table 3. Data attribution table listing the mooring datasets (with observing periods) incorporated 228 into the analysis. Data curating organization URLs and data DOIs are provided.

229

MOORING DATA	Obs. Period	Data Curating Organization URL	Data DOI
Chá bă ¹	07/10-	https://www.nodc.noaa.gov/ocads/data/010007	https://doi.org/10.3334/CDIAC/OTG.TSM_LAPUSH_1
	10/15	<u>2.xml</u>	<u>25W 48N</u>
Cape Elizabeth	06/06-	https://www.nodc.noaa.gov/ocads/data/011532	https://doi.org/10.3334/CDIAC/OTG.TSM_WA_125W_
cupe Ennaoeth	09/13	<u>2.xml</u>	<u>47N</u>
Dabob Bay*	06/10-	https://www.nodc.noaa.gov/ocads/data/011671	https://doi.org/10.3334/CDIAC/OTG.TSM_DABOB_12
Dabbb Day	11/14	<u>5.xml</u>	<u>2W 478N</u>
Turono h*	01/05-	https://www.nodc.noaa.gov/ocads/data/015760	https://doi.org/10.3334/CDIAC/OTG.TSM_TWANOH_
Twanoh*	06/16	<u>0.xml</u>	<u>123W 47N</u>
Com Inlat	10/10-	http://nwem.ocean.washington.edu/prod Data	https://doi.org/10.5291/gapada.1194657
Carr Iniet	06/16	Req.shtml	https://doi.org/10.5281/zenodo.1184657
Dallin aham Dari	02/16-	http://nwem.ocean.washington.edu/prod Data	https://doi.org/10.5291/gapada.1194657
Беннідпані Бау	01/17	Reg.shtml	https://doi.org/10.5281/zenodo.1184657
I loodon out	10/05-	http://nwem.ocean.washington.edu/prod Data	https://doi.org/10.5291/gapada.1194657
Hoodsport	05/16	Reg.shtml	https://doi.org/10.5281/zenodo.1184657
D	04/10-	http://nwem.ocean.washington.edu/prod Data	https://doi.org/10.5281/do-1184657
Point wells	06/16	Reg.shtml	nttps://doi.org/10.5281/zenodo.1184657
Newth Deces	11/05-	http://nwem.ocean.washington.edu/prod Data	https://doi.org/10.5281/do-1184657
North Buoy	05/16	Req.shtml	nttps://doi.org/10.5281/zenodo.1184657

230 231 ¹The Chá bă mooring is referred to as the La Push mooring in the NOAA data repository.

*Temperature and salinity data for the Dabob Bay and Twanoh moorings can be found here:

- 232 https://doi.org/10.5281/zenodo.1184657
- 233

234 Table 4. Mooring datasets incorporated into the analysis. The observing period and number of 235 fCO₂, DIC, TA, pH, S, and T values that were observed (Obs.), calculated (Calc.), and estimated 236 (Est.) are provided.

237

		60	0	D		,	га		T	C	т
MOORING DATA	Obs.	JCO_2		DIC		IA		pm		3	1
	Feriod	Obs.	Calc.	Obs.	Calc.	Obs.	Est.	Obs.	Calc.	Obs.	Obs.
Chá bă	07/10-11/15	9,681	0	0	9,330	0	9,341	7,438	2,291	9,341	9,717
Cape Elizabeth	06/06-03/15	17,617	0	0	17,617	0	17,667	0	17,617	17,667	18,009
Dabob Bay	06/10-11/14	2,076	0	0	2,076	0	4,662	0	2,076	4,662	4,662
Twanoh	01/05-06/16	9,221	0	0	9,221	0	28,466	0	9,221	28,466	28,466
Carr Inlet	10/10-06/16	0	1,848	0	1,848	0	12,369	1,848	0	12,369	12,369
Bellingham Bay	02/16-01/17	0	0	0	0	0	0	45,583	0	44,895	44,895
Hoodsport	10/05-05/16	0	0	0	0	0	17,147	0	0	17,186	17,186
Point Wells	04/10-06/16	0	0	0	0	0	4,315	0	0	4,315	4,315
North Buoy	11/05-05/16	0	0	0	0	0	10,199	0	0	10,199	10,199
TOTAL		38,595	1,848	0	40,092	0	104,166	54,869	31,205	149,100	149,818

238

239 3. Methods

240 3.1. Leveraging the carbon datasets

241 Seawater carbonate chemistry can be fully characterized with information about salinity, 242 temperature, pressure, weak acids that contribute to TA (e.g., phosphoric and silicic acid), and two 243 of the four commonly-measured carbonate system parameters: DIC, TA, pCO_2 (or fCO_2), and pH 244 (Dickson and Riley, 1978; Millero, 2007). In order to leverage the numerous SOCAT-v4 fCO2 245 observations that lack a second carbonate system parameter, a previously characterized 246 relationship between near-surface (≤ 25 m) salinity and TA (TA = 47.7 × Salinity + 647) for marine 247 surface waters near Washington (Fassbender et al., 2017a) was used to estimate TA from the 248 SOCAT-v4 SSS observations. This relationship yields TA estimates that have an uncertainty \leq 249 $\pm 34 \ \mu mol \ kg^{-1}$ at the 95% confidence level (2 σ) for waters with salinity ≥ 20 (Fassbender et al., 250 2017). Uncertainties may be larger in the salinity range of 20 to 27 ($2\sigma = \pm 94 \mu \text{mol kg}^{-1}$); however, 251 only ~2% of the SOCAT-v4 SSS observations are below salinity 27. TA was not estimated when 252 SOCAT-v4 SSS values were below 20 (n=4). The estimated TA and 2010-normalized SOCAT-v4 253 fCO₂ data were then used to calculate other carbonate system parameters of interest ("calculated" 254 values in Table 2). All carbonate system calculations herein were made using the program 255 CO2SYS Version 1.1 (van Heuven et al., 2011; Lewis and Wallace, 1998) with the equilibrium 256 constants of Lueker et al. (2000) and Dickson (1990) while applying the boron-to-chlorinity ratio 257 of Uppstrom, (1974), following the recommendations of Orr et al. (2015). SOCAT-v4 does not 258 include nutrient observations, so all of the associated CO2SYS calculations were made with 259 phosphate and silicate concentrations set to zero. The omission of nutrients when using the TA-260 fCO_2 pair to calculate other carbonate system parameters results in small errors. These errors were 261 previously assessed for the TA- pCO_2 pair within Washington waters (Fassbender et al., 2017a), 262 and will be discussed further in Sect. 3.2.

263

264 TA and DIC were measured during discrete sampling efforts in addition to temperature, 265 salinity, and pressure, and these data were used to calculate other carbonate system parameters of 266 interest. Some of the discrete sample datasets lack nutrient observations, so phosphate and silicate 267 concentration were set to zero for the associated CO2SYS calculations. Nutrient omission when 268 using the TA-DIC pair has a larger influence on calculated carbonate system parameters than the 269 TA- pCO_2 pair (Fassbender et al., 2017), which will be addressed further in Sect. 3.2. In some 270 cases, only DIC was measured. For these instances, TA was estimated from the previously 271 mentioned regional TA-salinity relationship when salinity was ≥ 20 (true of all discrete samples),

making it possible to fully characterize the carbonate system as long as DIC, SST, and SSS data were available. Finally, on cruises in which pH_T was measured directly, missing pH_T observations were calculated from TA and DIC. Details about the specific number of measured, estimated, and calculated values for each parameter can be found in **Table 2**.

276

277 Sustained, autonomous fCO₂ and pH measurements made on some of the surface moorings 278 located throughout the region (Fig. 1a) were also used to evaluate carbonate chemistry. The TA-279 salinity relationship was applied to the moored SSS observations to estimate TA for pairing with 280 the in situ fCO₂ or pH data (Fig. 1b; Table 4), allowing calculation of other carbonate system 281 parameters of interest. For the Chá bă mooring, where fCO2 and pH measurements have been made 282 simultaneously since 2010, fCO₂ and TA estimates were used to calculate additional carbonate 283 system parameters due to challenges associated with constraining the carbonate system with the 284 fCO₂-pH pair (Dickson and Riley, 1978; Fassbender et al., 2015; Gray et al., 2011). At moorings 285 limited to SSS and SST observations, TA was the only carbonate system parameter determined. 286 Importantly, salinity at the Twanoh and Hoodsport moorings occasionally dropped below 20 287 throughout the observational record, and salinity at the Bellingham Bay mooring was often < 20. 288 These samples were not used to estimate TA. Because the occurrence of salinity < 20 was 289 infrequent at Twanoh and Hoodsport (1.7% and 0.2% of samples, respectively), the exclusion of 290 these observations from seasonal cycle evaluations likely has a negligible impact. At Bellingham 291 Bay, regular occurrences of salinity < 20 (14% of samples) throughout all seasons renders the TA-292 salinity relationship unusable for a substantial fraction of the time series. Therefore, we do not 293 calculate TA, or any other carbonate system parameters, and evaluate only *in situ* pH_T observations 294 from the Bellingham Bay mooring.

295

For this study, the carbonate system parameters of interest (either measured, estimated, or calculated) include: TA, DIC, pH_T, *f*CO₂, aragonite saturation state (Ω_{Ar}), and the Revelle Factor (RF). Ω_{Ar} describes the thermodynamic stability of aragonite in solution, where aragonite is a polymorph of the mineral calcium carbonate (CaCO₃). This stability is dependent on temperature, pressure, salinity, and the concentrations of calcium and carbonate ions (Mucci, 1983). By definition, when $\Omega_{Ar} \ge 1$, the mineral is thermodynamically stable. When $\Omega_{Ar} < 1$, the mineral is unstable and will begin to dissolve. This is relevant to the study of OA because many marine

303 calcifying organisms make their shells out of aragonite and are susceptible to dissolution when 304 exposed to waters with low (often $\Omega_{Ar} < 1$, but occasionally higher) aragonite saturation states 305 (Barton et al., 2012; Bednaršek et al., 2014; Doney et al., 2009; Feely et al., 2008). The Revelle 306 Factor is analogous to the buffer capacity of the ocean (Broecker et al., 1979; Revelle and Suess, 307 1957; Sundquist et al., 1979; Takahashi et al., 1980) and provides information about how the 308 carbonate system responds to change. Formally, RF is equal to the fractional change in pCO_2 (or 309 fCO₂) divided by the fractional change in DIC resulting from a given perturbation. Lower RF 310 values equate to more buffered systems and result in a larger DIC change per percentage increase 311 in pCO_2 due to more efficient conversion of CO_2 into other molecular forms of DIC (e.g., 312 bicarbonate and carbonate ion), which enables additional seawater CO₂ uptake. Thus, low RF 313 regions are associated with larger anthropogenic carbon uptake through air-sea exchange relative 314 to high RF regions (e.g., Fassbender et al., 2017b; Sabine et al., 2004).

315

316 3.2. Errors associated with nutrient omission and estimating TA from salinity

317 Silicate and phosphate contribute to TA (Dickson, 1981) and when omitted from CO2SYS 318 carbonate system calculations can have a small but non-negligible influence on the calculated 319 parameters. This was evaluated previously by Fassbender et al. (2017a) for many of the cruise data 320 used herein; however, RF was not included in the analysis and the TA-pCO₂ pair was used rather 321 than $TA-fCO_2$ pair. Observations from regional cruises (**Table 2**) that include complete 322 information about TA, DIC, phosphate, silicate, salinity, and temperature were used to calculate 323 carbonate system parameters of interest using the observed nutrient concentrations and with 324 nutrient concentrations set to zero. The analysis was conducted with both the TA-DIC pair and the 325 TA- fCO_2 pair as input parameters, where fCO_2 values were initially calculated from TA and DIC 326 using the observed nutrient concentrations. Differences between the computations made with and 327 without nutrients are given in Table 5, displaying the larger influence of nutrient omission on 328 calculations made from the TA-DIC pair than the TA-fCO₂ pair for pH and Ω_{Ar} , though not for RF 329 due to its strong dependence to the DIC-TA ratio.

330

In addition to missing nutrient data, there is uncertainty in the Washington TA-salinity relationship (Fassbender et al., 2017a), which characterizes a static mean condition from which deviations can occur in both space and time. Biases in the estimated TA value caused by departures

334	from the mean condition may therefore create biases in the carbonate system parameters derived
335	from it. This is of particular relevance in regard to leveraging the SOCAT-v4 and mooring datasets
336	due to the explicit use of estimated TA to constrain the carbonate system. To evaluate the
337	magnitude of these potential biases, the same ship data discussed in the previous paragraph were
338	used (with nutrient concentrations set to zero) to compute carbonate system parameters of interest
339	from the TA-fCO ₂ pair after adding and subtracting the $\pm 2\sigma$ TA-salinity regression uncertainty (34
340	$\mu mol~kg^{\text{-}1})$ to the TA values. Absolute differences between the resulting values and original
341	estimates from the TA- fCO_2 pair (without altering the TA) were then averaged (Table 5). The
342	errors associated with using the Washington TA-salinity relationship are similar in magnitude to
343	those caused by nutrient omission when using the DIC-TA pair and much larger than those
344	resulting from nutrient omission when using the TA- fCO_2 pair, excluding for RF. These results
345	suggest that Ω_{Ar} is more sensitive to the TA-salinity regression uncertainty than nutrient omission
346	and RF is more sensitive to nutrient omission in the TA- f CO ₂ pair than uncertainty in TA-salinity
347	regression within Washington waters. Notably, most of the errors are small relative to sensor
348	accuracies and/or natural variability (including for fCO_2 and DIC), which will be addressed in Sect.
349	4.2.
350	

Table 5. Errors associated with calculating carbonate system parameters in the absence of nutrient
 data and when using salinity-based estimates of TA for marine surface waters near Washington.
 Results for the TA-DIC and TA-fCO₂ pairs of input parameters are shown.

354

OUTPUT →	pН	$\Omega_{\rm Ar}$	RF	fCO ₂	DIC
INPUT↓				(µatm)	(µmol kg ⁻¹)
TA & DIC (w/ - w/o Nutrients)	-0.007	-0.02	-0.009	11	-
TA & fCO ₂ (w/ - w/o Nutrients)	-0.0004	-0.002	-0.07	-	-2
TA & fCO_2 (±2 σ on Estimated TA)	± 0.007	± 0.05	± 0.02	-	±30

355

Finally, SOCAT-v4 and mooring SSS data used herein were not rigorously quality controlled beyond the identification of large outliers. Because TA is estimated directly from these salinity observations, we performed a simple evaluation of the TA-salinity regression sensitivity. Modern, generic conductivity sensors can achieve salinity measurements with an accuracy of ~0.02. To be conservative, we propagate a salinity error ten times this value (± 0.2) through the regression calculations. This yields a mean error of ± 10 µmol kg⁻¹ in TA, which is well within the TA regression 95% confidence interval of ± 34 µmol kg⁻¹. In order to exceed the regression uncertainty,

a salinity error of ~0.7, which is 35 times the presumed accuracy of 0.02, would be required. As a
result, salinity measurement errors are likely secondary to uncertainties associated with the
regression relationship.

366

367 3.3. New data products of monthly averaged carbonate chemistry

Discrete sample and SOCAT-v4 datasets (including estimated and calculated values) were combined and gridded to a $0.1^{\circ} \times 0.1^{\circ}$ scale. From here on, this merged product will be referred to as the discrete data product. **Figure 2a** shows the total number of times that two carbon parameters were available to fully characterize the carbonate system within each $0.1^{\circ} \times 0.1^{\circ}$ grid cell. Monthly means, unique to each year (mm_{yr}), were calculated for each parameter then averaged over the number of years (n) with data to get the overall mean value (mm) for each month of the seasonal cycle.

- 375
- 376

$$\overline{mm} = \frac{\sum_{yr=1}^{n} mm_{yr}}{n} \tag{1}$$

377

The same approach was applied to the mooring data so that monthly observations from each year were weighted equally, regardless of the number of available samples. Average seasonal cycles of all parameters for each region and mooring are tabulated in **Appendices B** and **C**.

381

Monthly variance values, unique to each year $(m\sigma^2_{yr})$, were calculated for each parameter then averaged over the number of years with data before the square root was taken to determine the mean standard deviation $(\overline{m\sigma})$ for each month of the seasonal cycle.

385

 $\overline{\mathrm{m}\sigma} = \sqrt{\frac{\sum_{yr=1}^{n}\mathrm{m}\sigma^{2}yr}{n}}$ (2)

387

386

Fig. 3 shows monthly averaged SST data from each annual Cape Elizabeth (CE) mooring deployment (mm_{yr} values) as well as the multi-year average seasonal cycle (\overline{mm} values). Shading bounds the mean standard deviation (**Eq. 2**; **Fig. 3a**) and the standard deviation of monthly mean values (**Fig. 3b**), as expressed in **Eq. 3**:

393
$$\sigma = \sqrt{\frac{\sum_{yr=1}^{n} (mm_{yr} - \overline{mm})^2}{n-1}}$$
(3)

394

The former (**Eq. 2**) provides an estimate of the range of variability about the mean that is observed in a given month, while the latter (**Eq. 3**) provides an estimate of interannual variability in the mean. Both methods deliver equally useful information; however, nearly all of the moored time series are shorter than a decade, which hinders making robust estimates of interannual variability. Thus, standard deviations presented herein (and tabulated in **Appendix C**) reflect the average range of variability about the mean during each month (i.e., **Eq. 2**; **Fig. 3a**).

401

Figure 2: Maps showing (a) the total number of times the carbonate system was fully characterized
(two parameters available) in each grid cell, (b) the number of months represented in the seasonal
cycle for each grid cell, and (c) the eight unique regions identified, including: North Pacific (NP),
British Columbia (BC), Outer Coast (OC), Columbia River (CR), Juan de Fuca (JF), Strait of
Georgia (SG), Hood Canal (HC), and Puget Sound (PS).

409 Figure 2b shows the number of months represented in the seasonal cycle estimate for each 410 grid cell, highlighting that all 12 months are rarely resolved within a single grid cell. It is important 411 to note, however, that neighboring grid cells with, for example, six months of the year represented 412 may have observations from different months, making it possible to fully resolve the annual cycle 413 by combining the seasonal cycles of neighboring grid cells with similar characteristics. Relying on 414 this approach to accommodate data paucity, salinity and topographic features (e.g., the Juan de 415 Fuca Canyon and continental shelf) were used to identify eight unique regions (Fig. 2c) in which 416 seasonal cycles from individual grid cells were averaged to create regional estimates. These 417 regions include: North Pacific (NP), British Columbia coast (BC), Washington Outer Coast (OC),

418 Columbia River (CR), Strait of Juan de Fuca (JF), Strait of Georgia (SG), Hood Canal (HC), and 419 Puget Sound (PS). Importantly, some of the major physical features that result in regionally distinct 420 characteristics, such as the Columbia and Fraser River plumes and the Juan de Fuca Eddy, vary in 421 extent seasonally. The nonuniformity of available data in space and time means that these features 422 and their seasonal transitions may not be adequately captured in all grid cells. In addition, the lines 423 between regional boundaries can be blurred by interannual variability that may be inconsistently 424 represented in neighboring grid cells. Thus, the dynamic nature of the coastal zone should be 425 considered when applying the regional seasonal cycles characterized herein, which are presented 426 in a static-boundary framework. Due to the unequal distribution of discrete observations in space 427 and time, monthly mean standard deviations for the regional seasonal cycle estimates do not 428 provide reliable information and are not included in **Appendix B**.

429

430

431 Figure 3. Monthly averaged SST values for each year (2006-2015) of Cape Elizabeth mooring 432 data (mm_{vr}; blue lines) and the average seasonal cycle of SST across all deployments (mm; black 433 line). Blue and black lines are the same in plots **a** and **b**. Gray shading represents (**a**) the mean 434 monthly standard deviation ($\overline{m\sigma}$) and (b) the standard deviation of monthly means (σ). Black 435 arrows point to a region of notable discrepancy between computations. Here, the average sub-436 monthly SST variability (a) is much smaller than the range of interannual SST variability (b), 437 indicating that organisms could experience distinct (i.e., non-overlapping) SST conditions during 438 two subsequent Februaries.

439

440 **4. Results and discussion**

441 4.1. Modern seasonal cycles

442 Seasonal cycles for the eight regions, derived using measurements from the top 10 m of the 443 water column, are shown in **Fig. 4**. A clear pattern of salinity decrease is observed moving from 444 the offshore North Pacific region toward land where rivers contribute freshwater to the marine

445 environment. In particular, the Columbia and Fraser River outflows are evident in the seasonal 446 cycles for the Columbia River and Strait of Georgia regions, with other small rivers exerting a 447 strong influence on the semi-enclosed Hood Canal and Puget Sound domains. SST seasonal cycles 448 are similar in structure across regions, excluding the Strait of Juan de Fuca where vigorous mixing 449 driven by bottom topography results in much cooler surface temperatures than neighboring areas 450 throughout the year (Alford and MacCready, 2014; Martin and MacCready, 2011). The mean 451 seasonal cycles for fCO_2 and pH are approximate mirror images within each region as a result of 452 the strong negative correlation between these two parameters (Dickson and Riley, 1978). Annual 453 mean fCO₂ values increase and pH values decline when moving from the offshore North Pacific 454 toward the Salish Sea, and the seasonal cycle amplitudes increase for both parameters. In all 455 regions, the lowest fCO₂ values emerge in summer and the highest values in winter, which opposes 456 expectations associated with temperature-driven solubility changes (Takahashi et al., 1993). This 457 suggests that physical and biological effects dominate over solubility changes in all regions 458 (Pelletier et al., 2018), though to varying extents. Due to the logarithmic nature of the pH scale, 459 declines in the annual mean pH coupled with increases in the seasonal range of pH values means 460 that organisms in the Salish Sea (Puget Sound, Hood Canal, Strait of Juan de Fuca, and Strait of 461 Georgia) are exposed to extremely large changes in $[H^+]$ on seasonal time scales. For example, the 462 seasonal range of [H⁺] in Hood Canal is ~27 times larger than in the North Pacific region, which 463 indicates that organisms are living in starkly different chemical regimes across a relatively small 464 spatial domain.

465

467 **Figure 4.** Near surface (< 10 m) seasonal cycles of (a) SSS, (b) SST, (c) fCO₂, (d) pH_T, (e) TA, 468 (f) DIC, (g) Ω_{Ar}, and (h) Revelle Factor (RF) for the eight regions shown in **Fig. 2c**: North Pacific 469 (NP), British Columbia (BC), Outer Coast (OC), Columbia River (CR), Juan de Fuca (JF), Strait 470 of Georgia (SG), Hood Canal (HC), and Puget Sound (PS).

471

472 Most regions exhibit moderate seasonal TA variability with the exception of the Strait of 473 Georgia where the Fraser River has a significant impact on the TA. Additionally, the Hood Canal 474 and Puget Sound regions display somewhat erratic seasonal TA variations likely due to sporadic 475 river influences and/or the small number of available samples that are unevenly distributed in space 476 and time (Appendix B). DIC seasonal cycles are similar to TA but with larger amplitudes. 477 Generally, DIC and TA are highest during winter and lowest during summer, with DIC:TA being 478 lowest in summer. Ω_{Ar} is dependent on temperature and the carbonate ion concentration [CO₃²⁻]. 479 which is inversely proportional to DIC:TA. Ω_{Ar} seasonal cycles closely track (DIC:TA)⁻¹ changes 480 in all regions, expressing the highest values during summer and the lowest values during winter. 481 If SST is held constant in the CO2SYS calculations of Ω_{Ar} for each region, the resulting seasonal 482 cycle is altered by <10% for all regions. This indicates that local chemistry changes are controlling 483 the Ω_{Ar} seasonal cycle throughout the study domain, with temperature contributing minimally. 484 Finally, RF values are elevated during winter and depressed during summer indicating a larger 485 buffer capacity of waters during summer. RF values in the Salish Sea are ~50% higher than those 486 in coastal regions, particularly during winter, indicating that Salish Sea waters are significantly 487 less efficient at absorbing anthropogenic carbon than open ocean waters at the same latitude. In 488 general, seasonal cycle amplitudes are largest within the Salish Sea for all parameters.

489

490 Seasonal cycles for the nine moorings, using data collected from ~1 m depth, are shown in Fig. 491 5 and generally follow the same pattern as the eight regions. SSS decreases when moving inland 492 from the outer coast toward Puget Sound. SST cycles are similar across moorings, with larger 493 amplitudes found in shallower basins, such as at the Bellingham Bay and Carr Inlet moorings, as 494 well as the moorings in Hood Canal where vertical mixing is weaker than in other parts of Puget 495 Sound (Newton et al., 2003). pH and fCO₂ display opposing seasonal cycles and TA follows the 496 seasonality of salinity, as expected, exhibiting lower values during spring and summer and higher 497 values during fall and winter. DIC displays more pronounced seasonal cycles with the lowest 498 values in summer and highest values in winter. As seen for the regional discrete sample data, Ω_{Ar}

- 499 is highest in summer and lowest in winter following its inverse relationship with DIC:TA. Finally,
 500 RF values are lowest in summer and highest in winter, with the largest annual mean values in the
 501 Salish Sea. In general, seasonal cycle amplitudes for all parameters are higher in the Salish Sea
- 502 than on the outer coast, similar to what was found for the regional evaluations.
- 503

504

Figure 5. Near surface (~1 m) seasonal cycles of (a) SSS, (b) SST, (c) fCO_2 , (d) pH_T , (e) TA, (f) DIC, (g) Ω_{Ar} , and (h) Revelle Factor (RF) for the nine moorings shown in **Fig. 1a**: Cape Elizabeth (CE), Chá bă (CB), Carr Inlet (CI), Dabob Bay (DB), Twanoh (TW), Hoodsport (HS), Point Wells (PW), North Buoy (NB), and Bellingham Bay (BB).

510 A shared feature of the region and mooring seasonal cycle results is the seasonal evolution of 511 offshore-onshore gradients in numerous parameters. For example, most regions and moorings 512 exhibit similar winter SST values; however, large gradients in SST are found between sites during 513 summer. Alternatively, pH, Ω_{Ar} , and fCO₂ are most similar across sites during summer, with the 514 largest gradients found during winter. These findings suggest that seasonal resolution is needed to 515 accurately describe the spatial pattern of chemical gradients in the Pacific Northwest, particularly 516 since different parameters exhibit maximum gradients at dissimilar times of the year. Consistency between the large-scale seasonal cycle patterns derived from the nine moorings and eight unique 517 518 regions is somewhat surprising due to differences in the sampling depth, with the moorings 519 sampling the top ~ 1 m of the water column and regional seasonal cycles derived from samples 520 within the top 10 m. Since deeper waters are generally cooler and have higher salinity, fCO₂, TA, 521 and DIC values, this implies that seasonal forcing overwhelms any influence of stratification, 522 yielding the broad agreement between region and mooring seasonal cycles.

523

524 To more directly compare results from the regions and moorings and evaluate large-scale 525 patterns of variability, we focus on seasonal cycles from the Washington Coast, Puget Sound, and 526 Hood Canal domains. The left vertical panel of **Fig. 6** shows mean seasonal cycles from the Cape 527 Elizabeth and Chá bă moorings and the Columbia River and Outer Coast regions. The two 528 moorings lie within the Outer Coast region and display similar SSS and SST seasonal cycles, 529 suggesting that large-scale rather than local physical processes dominate the seasonal cycles at 530 both locations. However, there are notable differences in the seasonal cycles of carbonate system 531 variables between moorings, which indicates that carbonate chemistry on the Washington coast is 532 somewhat heterogeneous and cannot be adequately characterized with observations from a single 533 mooring. In contrast to the moorings and Outer Coast domain, the Columbia River region exhibits 534 a SSS and TA depression during spring/early-summer in concert with the maximum in Columbia 535 River discharge. The fresh water plume is often advected southward due to seasonal winds and 536 does not greatly influence salinity in the neighboring Outer Coast region or at the Cape Elizabeth 537 mooring during the summer months.

538

539 Gray shading around the Cape Elizabeth mooring seasonal cycles reflects the average range of 540 variability about the monthly mean (Eq. 2; $\overline{m\sigma}$). Sensors on the Cape Elizabeth and Chá bă 541 moorings collect samples every 3 hours, which means that one year of data equates to \sim 3,000 542 observations, or ~250 observations per month (though there are occasional gaps in the time series; 543 Fig. 1b). With multiple years of observations (Appendix B), data from these moorings provide 544 robust constraints on the average range of sub-monthly variability. General agreement between the 545 mooring data and relatively poorly-sampled regions is therefore somewhat exceptional, as many 546 regional carbonate system values fall within the $\pm 1\sigma$ envelope. This finding underscores that 547 seasonal variations outcompete the influence of vertical gradients associated with stratification 548 that would work to create discrepancies between the seasonal cycle data products.

553 Sound, and in Hood Canal. Asterisks are used for the regions. Black lines with gray shading 554 highlight data from one mooring within each domain (see figure keys in subplots **a** to **c**). Gray 555 shading shows the average range of variability about the mean during each month (i.e., average 556 standard deviation across years derived from variance estimates). See also Appendix D Figures. 557

558 Moving inland, the middle vertical panel of Fig. 6 shows the Carr Inlet and Point Wells 559 moorings and the Puget Sound region. The two moorings display similar SSS and TA seasonal 560 cycles in terms of magnitude and timing, and general agreement in SST with a larger amplitude 561 seasonal cycle at the Carr Inlet mooring due to more stratified conditions relative to the well-mixed 562 Point Wells site in the main basin of Puget Sound. The Puget Sound region generally follows the 563 mooring SSS and SST results, with some erratic variations likely caused by the much smaller 564 number of observations (Appendix B). Carbonate chemistry seasonal cycles from the Carr Inlet 565 mooring and Puget Sound region are similar in pattern but are offset due to the lower TA values 566 found throughout Puget Sound for nearly all months. Differences in the timing of seasonal 567 agreement between the carbon variables at Carr Inlet and Puget Sound may be attributable to 568 stratification and sampling depth; however, it is also important note that the carbonate variables 569 from Carr Inlet are based on only ~1.5 years of observations.

570

571 Finally, the right vertical panel of Fig. 6 shows results from the Twanoh, Dabob Bay, and 572 Hoodsport moorings as well as the Hood Canal region. There are significant differences in SSS 573 across sites, while SST seasonal cycles are similar for Twanoh and Dabob Bay as well as for Hoodsport and the Hood Canal region. Seasonal SSS variations at Twanoh and Hoodsport are 574 575 similar in timing and amplitude, but SSS is depressed at Twanoh due to its proximity to the 576 Skokomish River. This influence is muted at the Hoodsport mooring and even more so at the 577 Dabob Bay mooring (and correspondingly evident in TA), which is located much farther north and 578 outside of the main channel. The moorings, thus, depict a range of diverse physical conditions 579 within Hood Canal that depend on the sampling location. This is relevant because seasonal cycles 580 for the Hood Canal region were determined using far fewer discrete samples that were collected 581 across the entire domain (Appendix B), and thus blend all of the nuanced environments within the 582 canal. Though observations are not presently available to show the range of variability across the 583 Puget Sound region, this issue is likely also important when interpreting seasonal cycles from that 584 domain.

585

586 The seasonal cycles for carbonate system variables are unique across sites within Hood Canal 587 with somewhat better agreement found between the Twanoh and Dabob Bay moorings. The 588 pycnocline in Hood Canal is typically strong and often located at ~5-8 m. Thus, the 10 m depth-589 integrated water samples used for the regional assessment would include colder, saltier, and more 590 carbon rich waters than the surface moorings. This influence can be seen in SSS and DIC where 591 the Hood Canal region displays higher values than the moorings during almost all months. This is 592 particularly notable for SSS since the mooring estimates come from averaging the top 3 m of 593 profiling mooring observations. Thus, the region and mooring SSS (and SST) discrepancies would 594 likely be larger if the mooring values actually came from the top 1 m of water, where the fCO_2 595 measurements are made. This is supported by the extremely high fCO₂ and low pH values observed 596 in the Hood Canal region during winter that significantly exceed what is found at the moorings. 597 Better agreement in fCO_2 and pH exists across sites during summer, and there are fewer discrepancies for Ω_{Ar} and RF at all locations throughout the year due to the large dependence of 598 599 both parameters on DIC:TA, which is similar across sites.

600

601 Having discussed important nuances between the region and mooring seasonal cycles within 602 these domains, it is important to also consider the large-scale gradients in carbonate chemistry 603 across the domains. Taking a broader view of Fig. 6, greater environmental context is gained by 604 comparing results from the open North Pacific Ocean and the Salish Sea. The large decline in SSS 605 and increase in SST as waters become more stratified and heavily influenced by rivers when 606 moving toward land greatly outcompetes any small differences found among sites within a given 607 domain. There is an accompanying pattern of DIC decline along this path; however, TA exhibits 608 even larger declines, resulting in elevated DIC:TA and thus more poorly buffered waters (higher 609 RF values) within the Salish Sea. This leads to much higher fCO_2 values and lower pH and Ω_{Ar} 610 values in Hood Canal and Puget Sound than on the outer Washington coast. Since the North Pacific 611 Ocean is the sole source of marine water to the Salish Sea, elevated carbon content within the 612 Salish Sea reflects longer retention times and potentially intensified carbon cycling due to local 613 nutrient and carbon dioxide pollution (Feely et al., 2010; Pelletier et al., 2017).

615 In addition to gradients in annual mean values of carbonate system parameters, there is a 616 significant increase in the amplitude of seasonal cycles and in the range of sub-monthly variability 617 moving landward. Unexpectedly, the seasonal evolution of sub-monthly variability is unique to 618 different domains. For example, at the Twanoh mooring fCO₂, pH, and Ω_{Ar} vary significantly more 619 about the mean value during winter than during summer; however, at Carr Inlet and Cape 620 Elizabeth, the opposite is true. This kind of insight, which emerges from sustained observing, 621 provides precisely the type of information necessary to streamline OA monitoring, adaption, and 622 research. For example, understanding how natural variability amplifies and attenuates throughout 623 the year could improve our interpretations of sparse data, since samples collected during seasons 624 with low sub-monthly variability may better represent the monthly mean condition. Additionally, 625 the season exhibiting the lowest range of variability for a given parameter will likely be first to 626 exit the envelope of natural variability as anthropogenic carbon accumulates (Hauri et al., 2013; 627 Sutton et al., 2016). This nuanced information may be useful for determining when organisms will 628 begin to experience persistent anomalous conditions and for designing experiments that accurately 629 reflect nonstationarity in natural variability throughout the year.

630

631 4.2. Important limitations to consider

632 Although the average seasonal cycles herein may help to inform OA monitoring and research 633 conducted throughout the region, there are important limitations that must be acknowledged. The 634 region-specific seasonal cycles are meant to provide large-scale, environmental context and an 635 understanding of how the carbonate system varies across the broader domain. The moorings fill in 636 temporal observing gaps and give robust statistical estimates of mean conditions at specific 637 locations, as well as the average variability around those means. General agreement among the 638 region and mooring seasonal cycles lends confidence to the results, but is not necessarily expected 639 due to data paucity coupled with natural temporal variability and spatial heterogeneity within the 640 various regions (e.g., Fig. 6). Opportunities for discrepancy were especially evident in the more 641 stratified domains, such as Hood Canal and Puget Sound, due to differences in sampling depth for 642 the various datasets. While seasonal forcing appears to dominate over stratification and vertical 643 gradient issues in all domains, prior work has clearly shown that surface conditions do not reflect 644 bottom water conditions (Feely et al., 2010; Pelletier et al., 2017). General agreement between

data products is likely due to all depths residing within the euphotic zone such that verticalgradients are minimized relative to those found throughout the full water column.

647

648 A key challenge in developing seasonal cycle estimates for the smaller regional domains (e.g., 649 Hood Canal and Puget Sound) is the dearth of data that renders these seasonal cycles more 650 susceptible to biases that may result from non-homogenous conditions (e.g., proximity to rivers), 651 interannual variability, or anomalous events (e.g., storms). As discrete observations amass, this 652 issue will attenuate, but at present is something that needs to be considered when using the 653 information provided herein. Additionally, regional seasonal cycles were evaluated using rigid 654 domain boundaries, which we know to be dynamic in reality. Thus, caution should be used when 655 relying on our estimates to evaluate samples collected near one of the boundaries. The use of a 656 static regional TA-salinity relationship also has important implications for how carbonate system 657 seasonal cycles can be interpreted. The TA-salinity relationship homogenizes the influence of 658 freshwater alkalinity input (organic and inorganic) from numerous rivers in the region. As a result, 659 the regression may not work perfectly near a specific river mouth. In these cases (e.g., the Twanoh 660 mooring), the TA estimates may be biased and the bias may change seasonally. Importantly, **Table** 661 5 displays how these biases can propagate to other carbonate system variables. For all parameters, 662 these errors are significantly smaller than the seasonal cycle amplitudes and, in most cases, are 663 smaller than $\pm 1\sigma$ values from the moorings (Appendix B). This is also true of the *in situ* 664 measurement errors discussed throughout Sect. 2.

665

666 4.3. Understanding what the data do and do not reveal

667 Characterizing average seasonal cycles throughout the study domain reveals important 668 insights about how different types of observations can be used to better understand the dynamic 669 coastal region. Discrete measurements made sporadically over space and time can be challenging 670 to interpret without a vast number of data points, which are both cost- and time-intensive to collect. 671 This limitation arises from spatial heterogeneity and the range of temporal scales over which 672 variability can occur in the coastal zone (e.g., < days to > decades). Discrete observations provide 673 a snapshot in time that may or may not represent the mean condition. Even with multiple years of 674 observations, and no interannual variability, the true mean can be elusive due to sub-monthly 675 variations. What discrete observations do extremely well is unveil the connectivity of spatial

domains by sampling across regions over a fixed period of time (e.g., research cruise). This too has uncertainty resulting from environmental heterogeneity and chemical gradients that are nonstationary over time, but is at present the most effective and efficient method of making dualparameter, high-quality carbon observations across a wide spatial area.

680

681 Moorings provide something altogether different. Sustained, high-frequency observations fill 682 in temporal uncertainties, integrating over (often) unknown spatial scales that vary with tidal 683 cycles, surface currents, and depth, allowing for robust determination of the mean condition and 684 the average variability about the mean within the represented domain. This type of information 685 lends context to discrete samples by providing bounds on the domain within which discrete 686 samples may be expected to reside. Figure 7, for example, shows the monthly mean fCO_2 seasonal 687 cycle from the Cape Elizabeth mooring as well as the same data shifted upward by 50 µatm, which 688 is meant to represent an anomalous year, where the range of sub-monthly variability (shading) is 689 identical for each year. Two discrete fCO₂ samples collected during one "normal" and one 690 "anomalous" June could span over 100 µatm, hampering determination of which sample best 691 reflects the mean conditions. Mooring observations collected over the same two years would give 692 an average seasonal cycle that falls in-between the two lines shown in Fig. 7, and the discrete 693 samples would thus lie outside of the associated $\pm 1\sigma$ window. This would make it tempting to 694 conclude that the discrete samples are outliers when the data actually indicate that one of the 695 sampling years was anomalous. The true climatology would eventually emerge with additional 696 years of observations. Thus, firm conclusions about what is or isn't an anomaly or outlier may be 697 extremely challenging to decipher without a sustained time series and information about the 698 magnitude of sub-monthly variability.

699

To summarize, the array of time and space scales over which chemical variability occurs in U.S. West Coast waters hinders our ability to adequately describe the coastal system without the dual effort of ship-based and moored observations that provide complementary information. The seasonal cycles presented herein are an example of what can be achieved from such efforts and serve as a starting point from which strategic improvements to observational networks can be made.

707

Figure 7. Schematic showing the Cape Elizabeth (CE) mooring monthly mean fCO_2 seasonal cycle (black) and the seasonal cycle +50 µ atm (blue), which is meant to reflect an anomalous year. Black and blue shading are identical in magnitude and show the mean standard deviation ($\overline{m\sigma}$). The filled circles show two hypothetical discrete samples collected during June of each year.

712

713 **5.** Conclusions

714 Quantifying modern, human-induced changes in surface ocean chemistry requires a baseline 715 from which to assess alterations. These baselines often do not exist in coastal regions where large-716 magnitude and high-frequency natural oscillations can overwhelm the secular anthropogenic 717 signal. This inhibits our understanding of how coastal environments are changing and will continue 718 to do so until these domains are adequately characterized. In an effort to galvanize baseline 719 development for seawater parameters relevant to the study of ocean acidification, we have 720 compiled ~100,000 in situ carbonate system observations from marine surface waters near 721 Washington State to characterize carbonate system variability throughout the region. By merging 722 fCO₂ observations from the SOCAT-v4 database with dissolved inorganic carbon (DIC), total 723 alkalinity (TA), and pH_T measurements made during discrete sampling efforts, we have estimated 724 the average seasonal cycles of numerous carbonate system parameters in marine surface waters 725 from eight distinct regions within the Pacific Northwest. Agreement between these regional 726 estimates and the average seasonal cycles determined at nine surface moorings throughout 727 Washington State coastal waters indicates a coherent, large-scale gradient in carbonate chemistry 728 from the open North Pacific Ocean into the Salish Sea that is seasonally variable. Near surface 729 salinity, DIC, TA, aragonite saturation state, and pH decline significantly along this path. Larger 730 declines in TA relative to DIC lead to elevated fCO_2 and Revelle Factor values within the Salish 731 Sea, indicating a lower capacity of these inland waters to absorb anthropogenic carbon than 732 offshore waters at the same latitude. These large-scale gradients persist throughout the year but

vary seasonally in magnitude with unique variables expressing larger gradients during different seasons. For all carbonate system parameters, the seasonal cycle amplitudes and ranges of submonthly variability are larger within the Salish Sea, indicating that organisms living in the Pacific Northwest experience starkly different chemical environments across the study domain.

737

738 In addition to providing environmental context, this analysis reveals important insights about 739 the extreme care required to accurately interpret spatially and temporally nonuniform observations 740 from the coastal zone. Spatial heterogeneity was discovered within all regional domians evaluated, 741 indicating that chemical conditions, even in semi-enclosed domains, cannot be adequately 742 characterized using observations from a single mooring. Additionally, the wide range of sub-743 monthly variability found at the mooring sites suggests that it may be difficult to determine what 744 is and isn't an outliner in a discrete dataset, particularly in the context of interannual variability. 745 By pairing multiple types of datasets (discrete, underway, and sustained time series) our ability to 746 interpret complex coastal environments can be enhanced by more than what is achievable from 747 any one observing approach. It is our intent that the insights gained from the seasonal cycle 748 characterizations herein help to guide strategic monitoring, management, and scientific inquiry 749 that leads to improved baseline development and water quality assessment in Washington State. 750

751 **6.** Appendix A

752 **Table A1**. Discrete datasets incorporated into the analysis. The observing period and the number 753 of phosphate, silicate, SSS, and SST observations for each cruise are provided. Data DOIs 754 matching those in Table 1 are also listed. Phosphate and silicate samples were analyzed following 755 standard protocols (UNESCO, 1994) during all cruises.

NILITED IENITE	Obs.	Phosphate	Silicate	SSS	SST	D-4- DOI
NUTRIENTS	Period	Obs.	Obs.	Obs.	Obs.	Data DOI
SOCAT-v41	1970-2015	0	0	52,528	57,422	https://doi.pangaea.de/10.1594/PANGAEA.866856
NOAA WCOA	05/2007	11	11	11	11	10.3334/CDIAC/otg.CLIVAR_NACP_West_Coast_Cr uise_2007
UW PRISM*	02/2008	74	78	80	80	https://doi.org/10.5281/zenodo.1184657
UW PRISM/EPA*	08/2008	105	105	122	122	https://doi.org/10.5281/zenodo.1184657
PacOOS*	08/2009	8	8	8	8	https://doi.org/10.5281/zenodo.1184657
UW PRISM*	09/2009	38	38	38	38	https://doi.org/10.5281/zenodo.1184657
PacOOS*	05/2010	13	13	13	13	https://doi.org/10.5281/zenodo.1184657
PacOOS*	08/2010	22	22	22	22	https://doi.org/10.5281/zenodo.1184657
UW PRISM*	11/2010	39	39	40	40	https://doi.org/10.5281/zenodo.1184657
UW/Chá bă*	05/2011	0	0	1	1	https://doi.org/10.5281/zenodo.1184657
NOAA WCOA	08/2011	11	11	37	37	10.3334/CDIAC/OTG.COAST WCOA2011

UW PRISM*	10/2011	38	38	60	60	https://doi.org/10.5281/zenodo.1184657
UW/NANOOS*	05/2012	0	0	4	4	https://doi.org/10.5281/zenodo.1184657
NOAA WCOA	09/2012	40	43	43	43	10.3334/CDIAC/OTG.COAST_WCOA2012
UW/Chá bă*	01/2013	0	0	2	2	https://doi.org/10.5281/zenodo.1184657
UW/NANOOS*	04/2013	1	1	19	19	https://doi.org/10.5281/zenodo.1184657
NOAA WCOA	08/2013	59	59	59	59	10.7289/V5C53HXP
UW/NANOOS*	09/2013	14	14	19	19	https://doi.org/10.5281/zenodo.1184657
UW/NANOOS*	06/2014	10	10	10	10	https://doi.org/10.5281/zenodo.1184657
ECY	06/2014	8	8	17	17	https://doi.org/10.5281/zenodo.1184657
WOAC*	07/2014	61	61	68	68	https://doi.org/10.5281/zenodo.1184657
ECY	07/2014	0	0	12	12	https://doi.org/10.5281/zenodo.1184657
ECY	08/2014	0	0	18	18	https://doi.org/10.5281/zenodo.1184657
WOAC*	09/2014	64	64	64	64	https://doi.org/10.5281/zenodo.1184657
ECY	09/2014	0	0	14	14	https://doi.org/10.5281/zenodo.1184657
UW/Chá bă*	10/2014	19	19	19	19	https://doi.org/10.5281/zenodo.1184657
ECY	10/2014	0	0	9	9	https://doi.org/10.5281/zenodo.1184657
ECY	11/2014	6	6	9	9	https://doi.org/10.5281/zenodo.1184657
ECY	01/2015	13	12	13	13	https://doi.org/10.5281/zenodo.1184657
ECY	02/2015	11	11	15	15	https://doi.org/10.5281/zenodo.1184657
ECY	03/2015	8	8	20	20	https://doi.org/10.5281/zenodo.1184657
ECY	04/2015	5	5	15	15	https://doi.org/10.5281/zenodo.1184657
ECY	05/2015	2	2	6	6	https://doi.org/10.5281/zenodo.1184657
TOTAL		680	686	53,415	58,309	

757 ¹The coastal subset of SOCAT-v4 data can be easily accessed here: <u>https://www.socat.info/index.php/version-4/</u>

*Full dataset in preparation for submission to a long-term data repository.

758 759

760 **7.** Appendix B

Table B1. Average monthly SSS seasonal cycles for the eight unique regions. The total number
 of observations (# Obs.) contributing to the monthly average estimate is included.

SSS	Jan.	Feb.	Mar.	Apr.	May	June	July	Aug.	Sept.	Oct.	Nov.	Dec.
North Pacific (NP)	32.3	32.5	32.9	32.3	32.1	31.9	31.7	31.9	32.0	32.1	32.2	32.4
# Obs.	163	439	250	66	305	2791	4024	1812	504	88	109	29
British Columbia (BC)	31.3	31.7	31.4	31.3	31.0	31.7	31.4	31.8	31.8	31.9	31.7	31.2
# Obs.	162	647	205	160	452	1107	8067	1735	250	229	110	100
Outer Coast (OC)	32.1	32.2	32.2	31.7	31.5	31.2	31.0	31.8	31.8	31.8	32.3	
# Obs.	57	65	170	7	34	1700	6969	5585	749	5	13	
Columbia River (CR)	32.1	31.6	30.7	29.1	29.1	30.1	30.0	29.9	30.7	31.4	32.3	
# Obs.	120	19	98	23	135	3456	1545	3059	719	24	46	
Juan de Fuca (JF)	30.4	30.7	30.8	30.1	30.8	31.0	30.8	31.0	31.3	31.1	31.2	31.3
# Obs.	68	2099	172	48	274	627	2046	814	152	44	43	40
Strait of Georgia (SG)		28.7		28.1	28.0	27.7	22.9	29.3	29.9	29.9		
# Obs.		192		5	58	32	5	35	6	1		
Hood Canal (HC)	24.1	28.3	25.7	26.0	28.5	27.0	27.7	28.8	29.5	28.5	27.9	
# Obs.	1	24	3	3	3	3	27	28	6	71	25	

Puget Sound (PS)	21.8	28.1	23.9	25.2	29.3	27.8	27.8	28.8	29.0	29.1	27.4	
# Obs.	12	57	17	12	35	93	287	257	32	49	15	

764

765 **Table B2**. Average monthly SST seasonal cycles for the eight unique regions. The total number

of observations (# Obs.) contributing to the monthly average estimate is included.

767

SST (°C)	Jan.	Feb.	Mar.	Apr.	May	June	July	Aug.	Sept.	Oct.	Nov.	Dec.
North Pacific (NP)	9.3	9.1	9.7	10.1	11.6	13.5	15.5	16.7	16.1	14.9	12.2	9.6
# Obs.	163	446	250	66	364	2791	4026	1922	504	88	109	29
British Columbia (BC)	9.2	8.8	8.7	9.8	11.5	12.5	13.8	13.3	13.8	11.9	10.9	9.0
# Obs.	166	644	205	160	567	1102	8078	1938	250	229	110	100
Outer Coast (OC)	9.1	9.3	9.8	9.9	11.2	12.6	15.7	14.3	14.2	14.8	12.0	
# Obs.	57	65	170	7	34	1700	6969	6301	750	5	13	
Columbia River (CR)	9.7	8.3	10.5	10.1	12.2	12.9	15.1	15.5	15.9	15.3	12.3	
# Obs.	120	19	98	23	135	3456	1545	3614	719	24	46	
Juan de Fuca (JF)	8.1	7.6	8.5	9.4	10.0	10.3	11.1	10.9	11.2	10.9	10.2	8.1
# Obs.	71	2108	172	48	378	628	1953	816	153	44	43	39
Strait of Georgia (SG)		7.2		9.1	11.7	11.8	14.7	13.8	12.0	11.7		
# Obs.		197		5	59	33	5	35	6	1		
Hood Canal (HC)	9.2	7.8	10.1	10.9	12.0	13.9	16.5	14.2	13.9	11.6	10.8	
# Obs.	1	24	3	3	3	3	27	28	6	71	25	
Puget Sound (PS)	9.0	7.8	10.0	11.1	10.1	12.1	13.8	13.8	13.4	13.2	11.5	
# Obs.	12	57	17	12	35	93	298	257	32	49	15	

768

Table B3. Average monthly TA seasonal cycles for the eight unique regions. The total number of
 observations (# Obs.) contributing to the monthly average estimate is included.

TA (µmol kg ⁻¹)	Jan.	Feb.	Mar.	Apr.	May	June	July	Aug.	Sept.	Oct.	Nov.	Dec.
North Pacific (NP)	2187	2194	2214	2185	2175	2165	2155	2167	2171	2176	2183	2189
# Obs.	163	439	250	66	305	2791	4024	1812	504	88	109	29
British Columbia (BC)	2138	2156	2141	2138	2124	2157	2144	2163	2163	2169	2158	2133
# Obs.	162	647	205	160	452	1107	8067	1735	250	229	110	100
Outer Coast (OC)	2173	2181	2179	2160	2150	2135	2123	2166	2160	2158	2184	
# Obs.	57	65	170	7	34	1700	6969	5584	749	5	13	
Columbia River (CR)	2179	2151	2111	2034	2049	2082	2076	2080	2113	2142	2187	
# Obs.	120	19	98	23	135	3456	1545	3059	719	24	46	
Juan de Fuca (JF)	2097	2111	2116	2081	2115	2125	2113	2125	2140	2126	2133	2137
# Obs.	68	2099	172	48	267	627	2046	816	152	44	43	40
Strait of Georgia (SG)		2012		1984	1980	1965	1842	2045	2071	2073		
# Obs.		192		5	58	32	5	35	6	1		
Hood Canal (HC)	1941	2007	1870	1972	2011	1935	1975	2033	2063	1999	1967	
# Obs.	1	24	3	3	3	3	27	28	6	71	25	
Puget Sound (PS)	1795	1986	1894	1919	2046	1956	1963	2020	2023	2035	1989	

#	ŧ Obs.	12	57	17	12	35	93	287	257	32	49	15
---	--------	----	----	----	----	----	----	-----	-----	----	----	----

772

773 Table B4. Average monthly DIC seasonal cycles for the eight unique regions. The total number

of observations (# Obs.) contributing to the monthly average estimate is included.

775

DIC (umal karl)	Ion	Fab	Mon	Ann	Mon	Iuno	Inly	Ang	Sont	Oat	Nov	Dee
DIC (µiiloi kg -)	Jan.	ren.	Mar.	Apr.	way	June	July	Aug.	Sept.	001	INUV.	Dec.
North Pacific (NP)	2019	2027	2029	1992	1974	1954	1941	1940	1950	1964	1990	2017
# Obs.	163	446	250	66	305	2791	4024	1814	504	88	109	29
British Columbia (BC)	1998	2015	1992	1944	1903	1928	1935	1959	1967	2012	2001	2000
# Obs.	162	627	205	160	462	1104	8067	1732	250	229	110	100
Outer Coast (OC)	2008	2023	2006	1941	1962	1918	1879	1928	1919	1957	1993	
# Obs	57	65	170	7	34	1700	6969	5585	749	5	13	
										-		
Columbia River (CR)	2014	1988	1926 5	1852	1855	1874	1831	1841	1897	1938	1989	
# Obs	12011	10	08	23	135	3456	1545	3050	710	24	1/6	
# Obs.	120	19	90	23	155	5450	1545	3039	/19	24	40	
Juan de Euca (JE)	1003	2034	2020	1056	1070	2024	2016	2038	2056	2054	2031	2075
	1775	2034	172	1950	201	2024	2010	2030	150	2034	42	2075
# Obs.	68	2105	172	48	301	033	2044	827	152	44	43	40
		1066		1057	1000	1022	1702	1005	1001	1050		
Strait of Georgia (SG)		1966		1857	1808	1833	1702	1905	1981	1958		
# Obs.		192		5	58	32	5	35	6	1		
Hood Canal (HC)	1921	1964	1628	1756	1822	1784	1783	1888	1944	1951	1972	
# Obs.	1	24	3	3	3	3	27	28	6	71	25	
Puget Sound (PS)	1778	1944	1844	1751	1915	1830	1820	1881	1919	1932	1959	
# Obs.	12	57	17	12	35	93	287	257	32	49	15	

776

777 **Table B5**. Average monthly *f*CO₂ seasonal cycles for the eight unique regions. The total number

of observations (# Obs.) contributing to the monthly average estimate is included.

fCO ₂ (µatm)	Jan.	Feb.	Mar.	Apr.	May	June	July	Aug.	Sept.	Oct.	Nov.	Dec.
North Pacific (NP)	361	363	343	320	320	322	340	338	344	344	349	357
# Obs.	163	446	250	66	364	2791	4026	1876	504	88	109	29
British Columbia (BC)	402	413	380	300	261	290	335	349	368	445	404	432
# Obs.	164	648	205	160	562	1083	8078	1922	248	229	110	100
Outer Coast (OC)	358	385	356	264	337	288	282	275	285	359	351	
# Obs.	57	65	170	7	34	1700	6969	6301	750	5	13	
Columbia River (CR)	373	341	311	277	287	287	257	275	323	350	340	
# Obs.	120	19	98	23	135	3456	1545	3614	719	24	46	
Juan de Fuca (JF)	486	621	550	438	433	584	624	655	699	769	609	724
# Obs.	69	2110	172	48	367	638	2094	832	157	44	43	40
Strait of Georgia (SG)		694		386	304	400	300	466	621	500		
# Obs.		197		5	59	33	5	35	6	1		
Hood Canal (HC)	879	750	161	211	274	356	325	462	607	1032	1311	
# Obs.	1	24	3	3	3	3	27	28	6	71	25	
Puget Sound (PS)	794	742	654	283	286	416	422	487	614	607	948	
# Obs.	12	57	17	12	35	93	298	257	32	49	15	

Earth System Discussion Science sions Data

7	80
---	----

- 781 **Table B6**. Average monthly pH seasonal cycles for the eight unique regions. The total number of
- 782 observations (# Obs.) contributing to the monthly average estimate is included.

783

		F 1				•	T 1		a .	0.1		<u> </u>
рН	Jan.	Feb.	Mar.	Apr.	May	June	July	Aug.	Sept.	Oct.	Nov.	Dec.
North Pacific (NP)	8.07	8.07	8.09	8.12	8.12	8.11	8.09	8.10	8.09	8.09	8.08	8.07
# Obs.	163	446	250	66	358	2791	4024	1770	504	88	109	29
British Columbia (BC)	8.02	8.02	8.05	8.14	8.18	8.16	8.11	8.09	8.07	8.00	8.03	8.00
# Obs.	160	647	205	160	455	1083	8067	1744	248	229	110	100
Outer Coast (OC)	8 07	8 05	8 07	8 1 9	8 10	8 1 5	8 16	8 14	8 16	8 07	8.08	
# Obs	57	65	170	7	34	1700	6969	5585	749	5	13	
<i>"</i> 005.	57	05	170	,	51	1700	0707	5505	/ 1/	5	15	
Columbia River (CR)	8.06	8.00	8 1 2	8 16	8 14	8 1 5	8 20	8 16	8 10	8.08	8.00	
# Ob-	120	10	0.12	22	125	2456	1545	2050	710	24	46	
# Obs.	120	19	98	25	155	5450	1343	3039	/19	24	40	
Juan da Euro (JE)	7.05	7 95	7.00	7.00	8 02	7.80	7 96	7 92	7.91	7 70	7 00	7 70
Juan de Fuca (JF)	1.95	7.65	1.90	1.99	0.02	1.09	7.60	7.05	1.01	1.10	/.00	1.19
# Obs.	67	2110	172	48	301	635	2044	/99	152	44	43	40
		0		0.00	0.10	0.00	0.00	- 00	7 05	T 0.2		
Strait of Georgia (SG)		7.78		8.03	8.13	8.02	8.08	7.98	7.85	7.93		
# Obs.		192		5	58	32	5	35	6	1		
Hood Canal (HC)	7.69	7.76	8.37	8.27	8.15	8.05	8.10	7.98	7.90	7.71	7.54	
# Obs.	1	24	3	3	3	3	27	28	6	71	25	
Puget Sound (PS)	7.71	7.76	7.81	8.16	7.99	8.00	8.02	7.97	7.88	7.87	7.67	
# Obs.	12	57	17	12	35	93	287	257	32	49	15	

784

Table B7. Average monthly Ω_{Ar} seasonal cycles for the eight unique regions. The total number of

786 observations (# Obs.) contributing to the monthly average estimate is included.

787

	Ian	Feb	Mar	Anr	May	Inne	Inly	Δησ	Sent	Oct	Nov	Dec
North Desifie (ND)	1.0	1.0	2.0	2.1	2.2	2.2	2 4	2.5	2.5	2.4	2.1	1.0
North Pacific (NP)	1.9	1.9	2.0	2.1	2.2	2.5	2.4	2.3	2.3	2.4	2.1	1.9
# Obs.	163	446	250	66	338	2791	4024	1814	504	88	109	29
British Columbia (BC)	1.6	1.6	1.7	2.1	2.4	2.5	2.3	2.3	2.2	1.8	1.8	1.6
# Obs.	161	647	205	160	455	1105	8067	1732	248	229	110	100
Outer Coast (OC)	1.9	1.8	1.9	2.4	2.1	2.4	2.7	2.6	2.6	2.2	2.1	
# Obs.	57	65	170	7	34	1700	6969	5585	749	5	13	
Columbia River (CR)	19	18	2.0	2.0	2.1	23	2.7	2.6	2.4	23	2.2	
# Obs.	120	19	98	23	135	3456	1545	3059	719	24	46	
Iuan de Euca (IE)	13	11	12	15	17	13	13	12	12	11	13	1.0
# Obs.	68	2110	172	48	300	633	2043	788	150	44	43	39
Strait of Georgia (SG)		0.8		15	19	16	16	17	12	14		
# Obs		102		5	50	22	5	25	6	1.4		
# Obs.		192		5	30	32	5	55	0	1		
Hood Canal (HC)	0.6	0.8	2.6	2.4	2.1	1.7	2.2	1.7	1.5	1.0	0.5	
# Obs.	1	24	3	3	3	3	27	28	6	71	25	
Puget Sound (PS)	0.6	0.8	0.8	1.9	1.5	1.5	1.7	1.6	1.3	1.3	0.7	
# Obs.	12	57	17	12	35	93	287	257	32	49	15	

789	Table B8. Average monthly Revelle Factor seasonal cycles for the eight unique regions. The total
790	number of observations (# Obs.) contributing to the monthly average estimate is included.

791

Revelle Factor	Jan.	Feb.	Mar.	Apr.	May	June	July	Aug.	Sept.	Oct.	Nov.	Dec.
North Pacific (NP)	13.0	13.1	12.5	12.1	11.8	11.5	11.3	11.0	11.1	11.4	12.1	12.9
# Obs.	163	446	250	66	356	2791	4024	1814	504	88	109	29
British Columbia (BC)	14.1	14.1	137	12.1	11.2	11.2	11.6	11.0	12.0	13.5	13.4	14.4
# Obs.	160	647	205	160	459	1082	8067	1727	248	229	110	100
Outer Coast (OC)	13.1	13.4	12.9	11.3	12.3	11.3	10.6	10.8	10.7	11.7	12.2	
# Obs.	57	65	170	7	34	1700	6969	5585	749	5	13	
Columbia River (CR)	13.1	13.2	12.2	12.2	11.8	11.5	10.5	10.7	11.2	11.6	11.9	
# Obs.	120	19	98	23	135	3456	1545	3059	719	24	46	
Less de Freed (IF)	157	17.0	16.0	147	14.0	15.0	16.1	165	16.6	17.1	15.0	17.0
Juan de Fuca (JF)	15.7	17.2	10.2	14./	14.0	15.9	10.1	10.5	10.0	17.1	15.8	17.8
# Obs.	67	2110	172	48	300	035	2043	/95	152	44	43	39
Strait of Georgia (SG)		18.6		14.6	12.5	14.1	13.2	13.9	16.2	15.0		
# Obs.		192		5	58	32	5	35	6	1		
Hood Canal (HC)	10.0	107	10.2	11.2	11.0	12.0	117	127	14.0	16.2	10 5	
HOOU Callal (HC)	19.9	24	10.5	2	2	15.0	27	13.7	14.9	71	10.5	
# Obs.	1	24	3	3	3	3	27	28	0	/1	23	
Puget Sound (PS)	20.2	18.8	18.7	12.9	14.2	14.2	13.6	14.0	15.6	15.7	18.9	
Obs.	12	57	17	12	35	93	287	257	32	49	15	

792

793 8. Appendix C

Table C1. Average monthly SSS seasonal cycles for the nine Washington State moorings. The
 average monthly standard deviation (StDev) and total number of observations (# Obs.)
 contributing to the monthly average estimate are included.

SSS	Jan.	Feb.	Mar.	Apr.	May	June	July	Aug.	Sept.	Oct.	Nov.	Dec.
Chá bă (CB)	30.3	30.7	30.6	30.5	30.8	31.2	31.5	31.9	31.9	31.8	31.8	31.4
StDev	1.2	1.2	1.6	1.1	0.4	1.2	0.8	0.3	0.5	0.5	0.5	0.7
# Obs.	398	224	248	280	485	1,080	1,461	1,648	1,346	1,029	646	496
Cape Elizabeth (CE)	31.1	30.7	30.9	30.4	30.5	31.2	31.7	32.0	31.9	31.8	31.8	31.5
StDev	1.3	1.5	1.4	1.3	1.5	1.1	0.7	0.3	0.5	0.5	0.6	0.8
# Obs.	1,488	1,352	1,295	1,199	1,161	1,246	1,715	1,812	1,621	1,756	1,538	1,484
Twanoh (TW)	24.5	24.5	24.7	24.6	24.7	25.1	25.7	26.4	26.5	26.2	25.8	25.1
StDev	2.7	2.3	2.3	1.8	1.5	1.0	1.1	0.7	1.0	1.7	2.5	2.7
# Obs.	684	913	1,443	2,678	3,332	3,234	3,169	3,664	3,993	3,220	1,545	591
Dabob Bay (DB)	29.2	28.3	27.6	26.8	26.6	26.6	26.2	27.3	28.3	28.9	28.0	28.6
StDev	0.1	0.6	0.8	0.5	0.5	0.8	1.0	0.9	0.3	0.5	1.0	0.9
# Obs.	34	33	85	109	174	286	767	1,167	1,138	667	163	39
Carr Inlet (CI)	28.8	28.5	28.2	28.1	28.2	28.4	28.8	29.1	29.4	29.7	29.7	29.2
StDev	0.2	0.2	0.2	0.2	0.2	0.1	0.1	0.1	0.1	0.2	0.1	0.2
# Obs.	349	347	1,008	937	820	1,161	1,629	1,641	1,611	1,566	716	584
Bellingham Bay (BB)	28.5	19.3	24.3	23.0	24.4	25.4	24.4	25.9	27.3	24.4	22.0	26.9

StDev # Obs.	2.9 844	8.5 2,102	5.1 4,308	4.9 3,611	3.3 4,365	3.3 4,227	2.9 4,317	2.2 3,958	2.6 4,223	6.7 4,383	7.7 4,218	3.9 4,339
Hoodsport (HS)	25.8	25.9	26.2	26.4	25.9	26.4	26.4	27.0	27.5	27.7	27.4	26.3
# Obs.	2.5 346	2.2 309	1.9 593	1,325	1.4 1,991	1,477	2,669	0.9 3,241	2,332	1,682	1.9 850	2.1 371
Point Wells (PW)	28.3	27.8	28.2	28.1	28.4	28.2	28.8	29.4	29.8	30.0	29.3	28.6
StDev # Obs.	1.2 128	0.9 84	0.5 208	0.5 275	0.4 474	0.5 379	0.4 631	0.2 494	0.2 398	0.2 751	0.8 364	0.6 129
North Buoy (NB)	28.0	28.0	20.1	20.2	20.1	20.2	20.6	20.0	20.0	20.2	20.0	20.4
StDev	28.9 0.6	28.9 0.5	0.4	0.2	0.3	0.3	29.6 0.3	0.2	0.2	0.3	29.9 0.5	29.4 0.5
# Obs.	329	474	349	578	884	972	1,476	1,734	858	1,320	693	532

798

Table C2. Average monthly SST seasonal cycles for the nine Washington State moorings. The
average monthly standard deviation (StDev) and total number of observations (# Obs.)
contributing to the monthly average estimate are included.

802

SST (°C)	Jan.	Feb.	Mar.	Apr.	May	June	July	Aug.	Sept.	Oct.	Nov.	Dec.
Chá bă (CB)	8.6	7.8	8.9	10.0	11.2	13.1	13.7	14.0	13.9	13.5	11.7	9.5
StDev	0.6	0.4	0.6	0.5	0.6	0.8	1.0	0.9	0.9	0.5	0.7	0.6
# Obs.	398	224	248	280	485	1,080	1,461	1,673	1,553	1,173	646	496
Cape Elizabeth (CE)	9.2	9.0	9.2	9.7	11.2	12.8	13.7	13.8	14.1	12.8	11.5	10.1
StDev	0.6	0.4	0.4	0.5	1.0	1.0	1.2	0.9	0.9	0.8	0.7	0.6
# Obs.	1,488	1,352	1,295	1,199	1,161	1,246	1,715	1,812	1,621	1,829	1,778	1,513
Twanoh (TW)	86	88	96	11.2	13.8	16.1	184	18.4	16.0	12.5	10.2	89
StDev	0.8	0.7	0.6	1.0	14	16	18	16	1.8	13	0.8	0.9
# Ohs	684	913	1.443	2.678	3 332	3 234	3 169	3 664	3 993	3 220	1.545	591
<i>iii</i> 005.	001	15	1,115	2,070	5,552	5,251	5,105	5,001	3,775	5,220	1,010	571
Dabob Bay (DB)	7.8	7.5	8.5	9.9	13.7	15.9	18.4	18.4	16.0	12.5	10.3	8.4
StDev	0.2	0.3	0.4	0.5	0.9	1.5	1.8	1.7	1.5	1.1	0.6	0.7
# Obs.	34	33	85	109	174	286	767	1,167	1,138	667	163	39
Carr Inlet (CI)	8.7	8.5	8.7	10.0	11.8	13.3	14.7	15.4	14.7	13.2	11.8	9.8
StDev	0.2	0.2	0.4	0.7	1.0	1.4	1.3	1.3	0.9	0.5	0.5	0.4
# Obs.	349	347	1,008	937	820	1,161	1,629	1,641	1,611	1,566	716	584
Bellingham Bay (BB)	67	82	0.1	12.2	14.3	14.9	17.4	17.6	14.7	11.4	0 0	74
StDev	0.7	0.2	0.6	12.2	1 2	12	16	13	13	0.9	1.0	1.2
# Obs	844	2 102	4 308	3 611	4 365	4 227	4 317	3 958	4 223	4 383	4 218	4 339
<i>iii</i> 005.	011	2,102	1,500	5,011	1,505	1,227	1,017	5,750	1,225	1,505	1,210	1,555
Hoodsport (HS)	8.7	8.6	9.3	10.5	12.9	14.4	17.0	16.7	14.4	11.7	10.4	9.3
StDev	0.9	0.7	0.4	0.9	1.5	1.5	2.0	1.7	1.7	1.3	0.7	0.8
# Obs.	346	309	593	1,325	1,991	1,477	2,669	3,241	2,332	1,682	850	371
Point Wells (PW)	8.1	8.2	8.5	9.6	10.9	12.1	13.2	13.6	13.1	12.6	11.3	9.3
StDev	0.3	0.3	0.2	0.3	0.6	0.7	0.6	0.5	0.3	0.3	0.6	0.4
# Obs.	128	84	208	275	474	379	631	494	398	751	364	129
North Buoy (NB)	8.4	8.2	8.5	9.1	10.6	11.7	13.0	13.1	12.7	11.2	10.3	8.8
StDev	0.2	0.1	0.3	0.4	0.5	0.7	0.7	0.6	0.4	0.3	0.4	0.4
# Ohs	329	474	349	578	884	972	1 476	1 734	858	1.320	693	532
<i>"</i> 003.	100	., .	517	570	001	//2	1,170	1,754	000	1,520	075	552

804 Table C3. Average monthly TA seasonal cycles for the eight Washington State moorings with 805 appropriate SSS observations (vast majority of SSS >20) to estimate TA. The average monthly 806 standard deviation (StDev) and total number of observations (# Obs.) contributing to the monthly 807 average estimate are included.

808

TA (µmol kg ⁻¹)	Jan.	Feb.	Mar.	Apr.	May	June	July	Aug.	Sept.	Oct.	Nov.	Dec.
Chá bă (CB)	2,090	2,108	2,105	2,102	2,114	2,132	2,148	2,165	2,167	2,161	2,162	2,142
StDev	59	58	77	54	20	55	40	12	25	22	22	34
# Obs.	398	224	248	280	485	1,080	1,461	1,648	1,346	1,029	646	496
Cape Elizabeth (CE)	2,130	2,110	2,118	2,094	2,101	2,135	2,156	2,173	2,168	2,162	2,164	2,149
StDev	62	73	67	60	73	53	32	14	24	24	28	38
# Obs.	1,488	1,352	1,295	1,199	1,161	1,246	1,715	1,812	1,621	1,756	1,538	1,484
	1 015	1 015	1 0 2 2	1 0 2 0	1 0 2 5	1.044	1 070	1 000	1 000	1 00 6	1.074	1.0.10
I wanon (I W)	1,815	1,815	1,823	1,820	1,825	1,844	1,870	1,903	1,909	1,896	1,876	1,842
StDev	127	109	108	85	71	49	51	34	49	82	119	127
# Obs.	684	913	1,443	2,678	3,332	3,234	3,169	3,664	3,993	3,220	1,545	591
Dabob Bay (DB)	2 037	1 006	1 964	1 922	1 0 1 5	1 9 1 6	1 805	1 9/15	1 007	2 022	1 980	2 012
StDev	2,037	29	30	24	24	30	49	41	1,777	2,022	47	45
# Obs	34	33	85	100	174	286	767	1 167	1 1 3 8	667	163	30
<i>π</i> 003.	54	55	05	107	1/4	280	101	1,107	1,150	007	105	37
Carr Inlet (CI)	2,019	2,007	1,992	1,988	1,991	2,002	2,020	2,033	2,047	2,060	2,064	2,036
StDev	11	8	11	7	7	7	7	5	7	8	7	11
# Obs.	349	347	1,008	937	820	1,161	1,629	1,641	1,611	1,566	716	584
Hoodsport (HS)	1,890	1,891	1,897	1,904	1,881	1,904	1,904	1,932	1,957	1,968	1,959	1,907
StDev	93	86	82	67	69	55	55	44	48	65	80	91
# Obs.	337	302	590	1,323	1,991	1,477	2,669	3,241	2,332	1,681	843	361
· · ·												
Point Wells (PW)	1,995	1,972	1,992	1,986	1,998	1,989	2,020	2,050	2,066	2,078	2,042	2,010
StDev	58	41	25	22	20	25	19	12	7	11	40	28
# Obs.	128	84	208	275	474	379	631	494	398	751	364	129
North Buoy (NR)	2 026	2 022	2 022	2 0 2 8	2.026	2 0 2 8	2 055	2 072	2 076	2 000	2 072	2.047
StDay	2,020	2,023	2,035	2,038	2,030	2,038	2,055	2,073	2,070	2,090	2,072	2,047
StDev	29	22 4774	19	12	13	10	13	12	12	1.220	22	23 520
# Obs.	329	4/4	549	5/8	884	912	1,470	1,734	828	1,320	093	552

809

810 Table C4. Average monthly DIC seasonal cycles for the five Washington State moorings with 811 sufficient observations to estimate DIC. The average monthly standard deviation (StDev) and total 812 number of observations (# Obs.) contributing to the monthly average estimate are included.

DIC (µmol kg ⁻¹)	Jan.	Feb.	Mar.	Apr.	May	June	July	Aug.	Sept.	Oct.	Nov.	Dec.
Chá bă (CB)	1,936	1,964	1,973	1,882	1,846	1,850	1,891	1,922	1,950	1,960	1,981	1,975
StDev	47	54	72	56	34	66	57	41	36	25	29	33
# Obs.	398	221	245	279	484	1,080	1,461	1,648	1,346	1,028	645	495
Cape Elizabeth (CE)	1,975	1,949	1,944	1,898	1,891	1,893	1,915	1,925	1,944	1,958	1,986	1,987
StDev	54	70	64	57	71	54	47	41	49	41	34	34
# Obs.	1,485	1,347	1,295	1,199	1,158	1,244	1,715	1,812	1,619	1,753	1,506	1,484
Twanoh (TW)	1,783	1,722	1,630	1,644	1,688	1,705	1,709	1,726	1,784	1,747	1,779	1,815
StDev	67	97	88	80	73	56	50	33	54	81	104	75
# Obs.	371	392	506	725	875	877	743	961	1,650	1,145	613	363

Dabob Bay (DB)	1,991	1,929	1,828	1,728		1,716	1,677	1,720	1,788	1,867	1,931	1,904
StDev	7	31	82	51		36	51	38	31	52	22	41
# Obs.	28	132	265	36		150	317	496	378	118	139	17
Carr Inlet (CI)	1,946	1,923	1,897	1,769	1,824	1,831	1,773	1,886	1,891	1,928	2,021	1,944
StDev	20	18	31	68	48	36	97	68	72	89	16	18
# Obs.	51	42	112	130	140	56	228	372	360	268	74	15

⁸¹⁴

815 **Table C5**. Average monthly *f*CO₂ seasonal cycles for the five Washington State moorings with

816 CO₂ sensors or sufficient observations to estimate *f*CO₂. The average monthly standard deviation

817 (StDev) and total number of observations (# Obs.) contributing to the monthly average estimate818 are included.

819

fCO ₂ (µatm)	Jan.	Feb.	Mar.	Apr.	May	June	July	Aug.	Sept.	Oct.	Nov.	Dec.
Chá bă (CB)	341	358	415	245	204	212	258	283	325	342	358	349
StDev	24	30	74	41	33	48	68	58	45	25	40	26
# Obs.	398	221	245	279	484	1,080	1,461	1,648	1,346	1,028	645	495
Cape Elizabeth (CE)	368	343	322	277	279	260	281	276	316	330	364	371
StDev	29	38	34	36	41	51	57	52	51	47	34	21
# Obs.	1,485	1,347	1,295	1,199	1,158	1,244	1,715	1,812	1,619	1,753	1,506	1,484
Twanoh (TW)	619	427	231	233	346	383	342	344	392	379	487	655
StDev	144	201	103	88	58	75	34	30	64	145	263	217
# Obs.	371	392	506	725	875	877	743	961	1,650	1,145	613	363
Dabob Bay (DB)	748	575	420	205		288	297	291	311	428	583	636
StDev	49	67	132	56		19	25	18	56	211	73	15
# Obs.	28	132	265	36		150	317	496	378	118	139	17
Carr Inlet (CI)	731	679	602	261	351	377	264	450	420	502	843	659
StDev	64	67	137	133	84	84	167	177	184	241	69	57
# Obs.	51	42	112	130	140	56	228	372	360	268	74	15

820

Table C6. Average monthly pH seasonal cycles for the six Washington State moorings with pH
sensors or sufficient observations to estimate pH. The average monthly standard deviation (StDev)
and total number of observations (# Obs.) contributing to the monthly average estimate are
included.

pH	Jan.	Feb.	Mar.	Apr.	May	June	July	Aug.	Sept.	Oct.	Nov.	Dec.
Chá bă (CB)	8.07	8.08	8.02	8.22	8.27	8.26	8.21	8.17	8.11	8.09	8.06	8.07
StDev	0.03	0.03	0.06	0.06	0.06	0.09	0.09	0.08	0.07	0.03	0.05	0.03
# Obs.	398	222	248	279	495	1,117	1,461	1,648	1,547	1,172	646	496
Cape Elizabeth (CE)	8.06	8.08	8.11	8.17	8.17	8.20	8.17	8.18	8.13	8.11	8.07	8.06
StDev	0.03	0.04	0.04	0.05	0.05	0.07	0.07	0.07	0.06	0.06	0.04	0.02
# Obs.	1,485	1,347	1,295	1,199	1,158	1,244	1,715	1,812	1,619	1,753	1,506	1,484
Twanoh (TW)	7.84	8.03	8.22	8.23	8.06	8.02	8.07	8.06	8.02	8.04	7.98	7.86
StDev	0.14	0.22	0.16	0.13	0.06	0.06	0.04	0.03	0.06	0.13	0.22	0.11
# Obs.	371	392	506	725	875	877	743	961	1,650	1,145	613	363
Dabob Bay (DB)	7.76	7.86	8.01	8.26		8.13	8.11	8.12	8.11	8.02	7.87	7.81
StDev	0.03	0.04	0.14	0.08		0.02	0.03	0.02	0.05	0.13	0.06	0.02
# Obs.	28	132	265	36		150	317	496	378	118	139	17

Carr Inlet (CI)	7.77	7.80	7.86	8.21	8.09	8.04	8.22	8.00	8.03	7.98	7.73	7.81
StDev	0.03	0.04	0.09	0.16	0.10	0.09	0.20	0.15	0.16	0.21	0.03	0.03
# Obs.	51	42	112	130	140	56	228	372	360	268	74	15
Bellingham Bay (BB)	8.07	7.81	7.95	8.12	8.25	8.12	7.99	7.99	8.16	7.99	7.94	8.06
StDev	0.03	0.08	0.09	0.20	0.10	0.12	0.19	0.17	0.07	0.11	0.09	0.05
# Obs.	844	2,114	4,377	4,168	4,367	4,227	4,318	3,963	4,226	4,385	4,229	4,365

826

827 **Table C7**. Average monthly Ω_{Ar} seasonal cycles for the five Washington State moorings with

sufficient observations to estimate Ω_{Ar} . The average monthly standard deviation (StDev) and total

829 number of observations (# Obs.) contributing to the monthly average estimate are included.

830

$\Omega_{ m Ar}$	Jan.	Feb.	Mar.	Apr.	May	June	July	Aug.	Sept.	Oct.	Nov.	Dec.
Chá bă (CB)	1.7	1.6	1.5	2.4	2.9	3.0	2.8	2.7	2.4	2.2	2.0	1.9
StDev	0.2	0.1	0.2	0.3	0.3	0.5	0.5	0.4	0.3	0.1	0.2	0.1
# Obs.	398	221	245	279	484	1,080	1,461	1,648	1,346	1,028	645	495
Cape Elizabeth (CE)	1.8	1.8	1.9	2.1	2.3	2.6	2.6	2.7	2.5	2.3	2.0	1.8
StDev	0.2	0.2	0.2	0.2	0.3	0.4	0.4	0.4	0.3	0.3	0.2	0.1
# Obs.	1,485	1,347	1,295	1,199	1,158	1,244	1,715	1,812	1,619	1,753	1,506	1,484
Twanoh (TW)	0.9	1.4	1.9	2.1	1.6	1.6	2.0	2.0	1.7	1.5	1.3	1.0
StDev	0.5	0.7	0.6	0.5	0.2	0.2	0.1	0.1	0.2	0.5	0.6	0.3
# Obs.	371	392	506	725	875	877	743	961	1,650	1,145	613	363
Dabob Bay (DB)	0.8	1.0	1.3	2.1		2.0	2.1	2.2	2.2	1.7	1.1	0.8
StDev	0.0	0.1	0.5	0.2		0.1	0.1	0.1	0.2	0.4	0.1	0.1
# Obs.	28	132	265	36		150	317	496	378	118	139	17
Carr Inlet (CI)	0.9	0.9	1.0	2.3	1.9	1.8	3.0	2.0	2.1	1.9	1.0	1.0
StDev	0.1	0.1	0.2	0.6	0.4	0.3	1.0	0.7	0.7	0.8	0.1	0.0
# Obs.	51	42	112	130	140	56	228	372	360	268	74	15

831

832 Table C8. Average monthly Revelle Factor seasonal cycles for the five Washington State 833 moorings with sufficient observations to estimate the Revelle Factor. The average monthly 834 standard deviation (StDev) and total number of observations (# Obs.) contributing to the monthly 835 average estimate are included.

Revelle Factor	Jan.	Feb.	Mar.	Apr.	May	June	July	Aug.	Sept.	Oct.	Nov.	Dec.
Chá bă (CB)	13.4	13.9	14.4	11.2	10.1	9.9	10.5	10.7	11.4	11.8	12.5	13.0
StDev	0.6	0.4	1.1	0.8	0.6	0.9	1.1	1.0	0.8	0.4	0.6	0.4
# Obs.	398	221	245	279	484	1,080	1,461	1,648	1,346	1,028	645	495
Cape Elizabeth (CE)	13.5	13.2	12.7	11.9	11.5	10.8	10.8	10.7	11.2	11.7	12.6	13.2
StDev	0.6	0.6	0.5	0.7	0.7	1.0	0.9	0.9	0.8	0.8	0.6	0.4
# Obs.	1,485	1,347	1,295	1,199	1,158	1,244	1,715	1,812	1,619	1,753	1,506	1,484
Twanoh (TW)	18.1	15.5	12.5	11.9	13.6	13.5	12.1	12.1	13.4	14.1	15.4	17.1
StDev	1.8	3.0	2.3	1.8	0.9	1.0	0.5	0.4	1.0	2.0	2.9	1.2
# Obs.	371	392	506	725	875	877	743	961	1,650	1,145	613	363
Dabob Bay (DB)	18.7	17.6	15.5	11.5		11.9	11.6	11.2	11.5	13.5	16.7	18.4
StDev	0.2	0.5	2.1	1.0		0.3	0.4	0.3	0.8	1.7	0.9	0.6
# Obs.	28	132	265	36		150	317	496	378	118	139	17

840

841Figure D1. Seasonal cycles of (a) SSS, (b) SST, (c) fCO_2 , (d) pH_T, (e) TA, (f) DIC, (g) Ω_{Ar} , and842(h) RF at the Cape Elizabeth (CE) and Chá bă (CB) moorings, and for the Outer Coast (OC) and843Columbia River (CR) regions. Gray shading shows ±1σ for CE. Text near the bottom of **a** indicates844the number of years of moored SSS, SST, and fCO_2 observations contributing to the monthly845seasonal cycle estimates. Slanted text in **a** and **b** indicates the total number of discrete observations846contributing to the monthly seasonal cycle estimates.

- 851 Canal (HC) region. Gray shading shows $\pm 1\sigma$ for TW. Text near the bottom of **a** and **b** indicates 852 the number of years of moored SSS and SST observations contributing to the monthly seasonal
- 853 cycle estimates. Text in **c** indicates the same information but for the moored fCO_2 observations.
- Text is staggered in **a** and **b** for viewing. Slanted text in **a** indicates the total number of discrete observations contributing to the monthly seasonal cycle estimates.
- 855 OI 856

857

Figure D3. Seasonal cycles of (**a**) SSS, (**b**) SST, (**c**) fCO₂, (**d**) pH_T, (**e**) TA, (**f**) DIC, (**g**) Ω_{Ar} , and (**h**) RF at the Carr Inlet (CI) and Point Wells (PW) moorings and for the Puget Sound (PS) region. Gray shading shows $\pm 1\sigma$ for CI. Text near the bottom of **a** indicates the number of years of moored SSS and SST observations contributing to the monthly seasonal cycle estimates. Text in **d** indicates the same information but for the moored pH observations. Slanted text in **a** indicates the total number of discrete observations contributing to the monthly seasonal cycle estimates.

865 **10. Author contributions**

A. Fassbender, S. Alin, R. Feely, and A. Sutton designed the study and contributed to the data
analysis and writing of the manuscript. J. Newton and W. Ruef provided much of the mooring and
cruise data and contributed to interpretation of the results and manuscript review. A. Devol
contributed to interpretation of the results and manuscript review. M. Keyzers wrote the sampling
plan and collected and provided data for ECY discrete samples. J. Bos, C. Krembs, and G. Pelletier
reviewed ECY data results, analyses, and the manuscript, and contributed to interpretation of the

873

874 **11. Acknowledgements**

The Surface Ocean CO₂ Atlas (SOCAT) is an international effort, endorsed by the International Ocean Carbon Coordination Project (IOCCP), the Surface Ocean Lower Atmosphere Study (SOLAS) and the Integrated Marine Biogeochemistry and Ecosystem Research program (IMBER), to deliver a uniformly quality-controlled surface ocean CO₂ database. The many researchers and funding agencies responsible for the collection of data and quality control are thanked for their contributions to SOCAT. The moored carbon observations were supported by NOAA's Ocean Acidification Program and PMEL (NOAA FundRef 100000192). The University

882 of Washington acknowledges that the mooring work from Puget Sound and Chá bă assets were 883 supported by numerous technicians, captains/crew, and scientists, including Al Devol, John 884 Mickett, and Beth Curry. Cruises were often staffed by trained volunteer students through the 885 PRISM, NANOOS, and WOAC programs. Funding was provided by the U.S. Integrated Ocean 886 Observing System through NOAA to NANOOS; NOAA's Ocean Acidification Program; the State 887 of Washington to the Washington Ocean Acidification Center (WOAC); the Navy to the Hood 888 Canal Dissolved Oxygen Program; the University of Washington to PRISM and for Bellingham 889 Bay; and EPA. The Washington Dept. of Ecology (Christopher Krembs, Julia Bos, Mya Keyzers, 890 Skip Albertson, Laura Hermanson, and Carol Maloy) conducts long-term monitoring of Puget 891 Sound including Hood Canal, Strait of Juan de Fuca, and Washington's coastal bays, collecting 892 and providing quality-assured marine data since 1973. A.J.F. was supported by the Postdocs 893 Applying Climate Expertise (PACE) Fellowship Program, partially funded by the WOAC and 894 NOAA Climate Program Office and administered by the UCAR Visiting Scientist Programs. This

- is PMEL contribution number 4632.
- 896

897 12. References

- 898 Adelsman, H. and Binder, L. W., Eds.: Washington State Blue Ribbon Panel on Ocean
- 899 Acidification (2012): Ocean Acidification: From Knowledge to Action, Washington State's
- 900 Strategic Response, Washington Department of Ecology, Olympia, Washington., 2012.
- Alford, M. H. and MacCready, P.: Flow and mixing in Juan de Fuca Canyon, Washington,
 Geophys. Res. Lett., 41(5), 1608–1615, doi:10.1002/2013GL058967, 2014.
- Alin, S. R., Brainard, R., Price, N., Newton, J. A., Cohen, A., Peterson, W., DeCarlo, E.,
- 904 Shadwick, E., Noakes, S. and Bednaršek, N.: Characterizing the Natural System: Toward
- 905 Sustained, Integrated Coastal Ocean Acidification Observing Networks to Facilitate Resource
- 906 Management and Decision Support, Oceanography, 25(2), 92–107,
- 907 doi:10.5670/oceanog.2015.34, 2015.
- Andersson, A. J. and MacKenzie, F. T.: Revisiting four scientific debates in ocean acidification
 research, Biogeosciences, 9(3), 893–905, doi:10.5194/bg-9-893-2012, 2012.
- 910 Bakker, D. C. E., Pfeil, B., Landa, C. S., Metzl, N., O& apos; Brien, K. M., Olsen, A., Smith,
- 911 K., Cosca, C., Harasawa, S., Jones, S. D., Nakaoka, S., Nojiri, Y., Schuster, U., Steinhoff, T.,
- 912 Sweeney, C., Takahashi, T., Tilbrook, B., Wada, C., Wanninkhof, R., Alin, S. R., Balestrini, C.
- 913 F., Barbero, L., Bates, N. R., Bianchi, A. A., Bonou, F., Boutin, J., Bozec, Y., Burger, E. F., Cai,
- 914 W.-J., Castle, R. D., Chen, L., Chierici, M., Currie, K., Evans, W., Featherstone, C., Feely, R. A.,
- 915 Fransson, A., Goyet, C., Greenwood, N., Gregor, L., Hankin, S., Hardman-Mountford, N. J.,
- 916 Harlay, J., Hauck, J., Hoppema, M., Humphreys, M. P., Hunt, C. W., Huss, B., Ibánhez, J. S. P.,
- 917 Johannessen, T., Keeling, R., Kitidis, V., Körtzinger, A., Kozyr, A., Krasakopoulou, E., Kuwata,
- 918 A., Landschützer, P., Lauvset, S. K., Lefèvre, N., Lo Monaco, C., Manke, A., Mathis, J. T.,
- 919 Merlivat, L., Millero, F. J., Monteiro, P. M. S., Munro, D. R., Murata, A., Newberger, T., Omar,
- 920 A. M., Ono, T., Paterson, K., Pearce, D., Pierrot, D., Robbins, L. L., Saito, S., Salisbury, J. E.,
- 921 Schlitzer, R., Schneider, B., Schweitzer, R., Sieger, R., Skjelvan, I., Sullivan, K. F., Sutherland,
- 922 S. C., Sutton, A. J., Tadokoro, K., Telszewski, M., Tuma, M., van Heuven, S. M. A. C.,
- 923 Vandemark, D. C., Ward, B., Watson, A. J. and Xu, S.: A multi-decade record of high-quality
- 924 fCO₂ data in version 3 of the Surface Ocean CO₂ Atlas (SOCAT), Earth Syst. Sci. Data, 8(2),
- 925 383-413, doi:10.5194/essd-8-383-2016, 2016.

- 926 Barton, A., Hales, B., Waldbusser, G. G., Langdon, C. and Feely, R. A.: The Pacific oyster,
- 927 Crassostrea gigas, shows negative correlation to naturally elevated carbon dioxide levels:
- 928 Implications for near-term ocean acidification effects, Limnol. Oceanogr., 57(3), 698–710,
- 929 doi:10.4319/lo.2012.57.3.0698, 2012.
- 930 Barton, A., Waldbusser, G. G., Feely, R. A., Weisberg, S. B., Newton, J. A., Hales, B., Cudd, S.,
- 931 Eudeline, B., Langdon, C., Jefferds, I., King, T., Suhrbier, A. and McLauglin, K.: Impacts of
- 932 Coastal Acidification on the Pacific Northwest Shellfish Industry and Adaptation Strategies
- 933 Implemented in Response, Oceanography, 25(2), 146–159, doi:10.5670/oceanog.2015.38, 2015.
- Bates, N., Astor, Y., Church, M. J., Currie, K., Dore, J., Gonaález-Dávila, M., Lorenzoni, L.,
- 935 Muller-Karger, F., Olafsson, J. and Santana-Casiano, J. M.: A time-series view of changing
- 936 ocean chemistry due to ocean uptake of anthropogenic CO₂ and ocean acidification,
- 937 Oceanography, 27(1), 126–141, doi:10.5670/oceanog.2014.16, 2014.
- 938 Bauer, J. E., Cai, W.-J., Raymond, P. A., Bianchi, T. S., Hopkinson, C. S. and Regnier, P. A. G.:
- 939 The changing carbon cycle of the coastal ocean, Nature, 504(7478), 61–70,
- 940 doi:10.1038/nature12857, 2013.
- 941 Bednaršek, N., Feely, R. A., Reum, J. C. P., Peterson, B., Menkel, J., Alin, S. R. and Hales, B.:
- 942 Limacina helicina shell dissolution as an indicator of declining habitat suitability owing to ocean
- 943 acidification in the California Current Ecosystem, Proc. R. Soc. B Biol. Sci., 281(1785),
- 944 20140123–20140123, doi:10.1098/rspb.2014.0123, 2014.
- 945 Bednaršek, N., Klinger, T., Harvey, C. J., Weisberg, S. B., McCabe, R. M., Feely, R. A.,
- 946 Newton, J. and Tolimieri, N.: New ocean, new needs: Application of pteropod shell dissolution
- 947 as a biological indicator for marine resource management, Ecol. Indic., 76, 240–244,
- 948 doi:10.1016/j.ecolind.2017.01.025, 2017.
- 949 Boehm, A. B. A., Jacobson, M. Z. M., O'Donnell, M., Sutula, M., Wakefield, W. W., Weisberg,
- 950 S. B. and Whiteman, E.: Ocean Acidification Science Needs for Natural Resource Managers of
- the North American West Coast, Oceanography, 25(2), 170–181, doi:10.5670/oceanog.2015.40,
 2015.
- 953 Borges, A. V.: Present Day Carbon Dioxide Fluxes in the Coastal Ocean and Possible Feedbacks
- 954 Under Global Change, in Oceans and the Atmospheric Carbon Content, edited by P. Duarte and
- 955 J. M. Santana-Casiano, pp. 47–77, Springer Netherlands, Dordrecht., 2011.
- Bos, J., Krembs, C. and Albertson, S.: Quality Assurance for Long-Term Marine Water Column
 pH Data. 16-03-042. [online] Available from:
- 958 https://fortress.wa.gov/ecy/publications/SummaryPages/1603042.html, 2016.
- 959 Bresnahan, P. J., Martz, T. R., Takeshita, Y., Johnson, K. S. and LaShomb, M.: Best practices for
- autonomous measurement of seawater pH with the Honeywell Durafet, Methods Oceanogr.,
- 961 9(October), 44–60, doi:10.1016/j.mio.2014.08.003, 2014.
- Brewer, P. G.: Direct Observation of the Oceanic CO₂ Increase, Geophys. Res. Lett., 5(12), 0–3,
 1978.
- 964 Broecker, W. S., Takahashi, T., Simpson, H. J. and Peng, T.-H.: Fate of fossil fuel carbon
- 965 dioxide and the global carbon budget., Science, 206(4417), 409–18,
- 966 doi:10.1126/science.206.4417.409, 1979.

Science Scienc

- 967 Byrne, R. H., Mecking, S., Feely, R. A. and Liu, X.: Direct observations of basin-wide
- acidification of the North Pacific Ocean, Geophys. Res. Lett., 37(2), 1–5,
- 969 doi:10.1029/2009GL040999, 2010.
- 970 Cai, W.-J., Hu, X., Huang, W.-J., Murrell, M. C., Lehrter, J. C., Lohrenz, S. E., Chou, W.-C.,
- 271 Zhai, W., Hollibaugh, J. T., Wang, Y., Zhao, P., Guo, X., Gundersen, K., Dai, M. and Gong, G.-
- C.: Acidification of subsurface coastal waters enhanced by eutrophication, Nat. Geosci., 4(11),
 766–770, doi:10.1038/ngeo1297, 2011.
- Caldeira, K. and Wickett, M. E.: Anthropogenic Carbon and Ocean pH, Nature, 425(September),
 365–365, doi:10.1038/425365a, 2003.
- 976 Dickson, A. G.: An exact definition of total alkalinity and a procedure for the estimation of
- alkalinity and total inorganic carbon from titration data, Deep Sea Res. Part A. Oceanogr. Res.
 Pap., 28(6), 609–623, doi:10.1016/0198-0149(81)90121-7, 1981.
- 979 Dickson, A. G.: Standard potential of the reaction : $AgCl(s) + 1/2H_2(g) = Ag(s) + HCl(aq)$, and 980 the standard acidity constant of the ion HSO₄⁻ in synthetic sea water from 273.15 to 318.15 K, J.
- 981 Chem. Thermodyn., 22, 113–127, 1990.
- Dickson, A. G. and Riley, J.: The effect of analytical error on the evaluation of the components
 of the aquatic carbon-dioxide system, Mar. Chem., 6, 77–85, doi:10.1016/0304-4203(78)90008-
- 984 7, 1978.
- Dickson, A. G., Sabine, C. L. and Christian, J. R., Eds.: Guide to best practices for ocean CO₂
- 986 measurements, PICES Special Publication 3, 191 pp. [online] Available from:
- 987 http://cdiac.ornl.gov/oceans/Handbook_2007.html, 2007.
- Doney, S. C., Fabry, V. J., Feely, R. A. and Kleypas, J. A.: Ocean acidification: the other CO₂
 problem., Ann. Rev. Mar. Sci., 1(1), 169–192, doi:10.1146/annurev.marine.010908.163834,
 2009.
- 991 Dunne, J. P., Devol, A. H. and Emerson, S.: The Oceanic Remote Chemical/Optical Analyzer
- 992 (ORCA)—An Autonomous Moored Profiler, J. Atmos. Ocean. Technol., 19(10), 1709–1721,
- 993 doi:10.1175/1520-0426(2002)019<1709:TORCOA>2.0.CO;2, 2002.
- 994 Ekstrom, J. A., Suatoni, L., Cooley, S. R., Pendleton, L. H., Waldbusser, G. G., Cinner, J. E.,
- 995 Ritter, J., Langdon, C., van Hooidonk, R., Gledhill, D. K., Wellman, K., Beck, M. W., Brander,
- 996 L. M., Rittschof, D., Doherty, C., Edwards, P. E. T. and Portela, R.: Vulnerability and adaptation
- 997 of US shellfisheries to ocean acidification, Nat. Clim. Chang., 5(3), 207–214,
- 998 doi:10.1038/nclimate2508, 2015.
- Evans, W., Hales, B. and Strutton, P. G.: Seasonal cycle of surface ocean *p*CO₂ on the Oregon
 shelf, J. Geophys. Res., 116, doi:10.1029/2010JC006625, 2011.
- 1001 Fassbender, A. J., Sabine, C. L., Lawrence-Slavas, N., De Carlo, E. H. H., Meinig, C. and
- 1002 Maenner-Jones, S.: Robust Sensor for Extended Autonomous Measurements of Surface Ocean
- 1003 Dissolved Inorganic Carbon, Environ. Sci. Technol., 49(6), 3628–3635, doi:10.1021/es5047183,
 1004 2015.
- 1005 Fassbender, A. J., Sabine, C. L. and Feifel, K. M.: Consideration of coastal carbonate chemistry
- 1006 in understanding biological calcification, Geophys. Res. Lett., 43(9), 4467–4476,
- 1007 doi:10.1002/2016GL068860, 2016.

- 1008 Fassbender, A. J., Alin, S. R., Feely, R. A., Sutton, A. J., Newton, J. A. J. A. and Byrne, R. H.:
- 1009 Estimating Total Alkalinity in the Washington State Coastal Zone: Complexities and Surprising
- 1010 Utility for Ocean Acidification Research, Estuaries and Coasts, 40(2), 404–418,
- 1011 doi:10.1007/s12237-016-0168-z, 2017a.
- 1012 Fassbender, A. J., Sabine, C. L. and Palevsky, H. I.: Nonuniform ocean acidification and
- 1013 attenuation of the ocean carbon sink, Geophys. Res. Lett., 44(16), 8404–8413,
- 1014 doi:10.1002/2017GL074389, 2017b.
- 1015 Feely, R. A., Sabine, C. L., Lee, K., Berelson, W. M., Kleypas, J. A., Fabry, V. J. and Millero, F.
- 1016 J.: Impact of anthropogenic CO₂ on the CaCO₃ system in the oceans., Science (80-.).,
- 1017 305(5682), 362–6, doi:10.1126/science.1097329, 2004.
- 1018 Feely, R. A., Sabine, C. L., Hernandez-Ayon, J. M., Ianson, D. and Hales, B.: Evidence for
- 1019 Upwelling of Corrosive "Acidified" Water onto the Continental Shelf, Science (80-.).,
- 1020 320(5882), 1490–1492, doi:10.1126/science.1155676, 2008.
- 1021 Feely, R. A., Doney, S. C. and Cooley, S. R.: Ocean Acidification: Present Conditions and
- 1022 Future Changes in a High-CO₂ World, Oceanography, 22(4), 36–47,
- 1023 doi:10.5670/oceanog.2009.95, 2009.
- 1024 Feely, R. A., Alin, S. R., Newton, J. A., Sabine, C. L., Warner, M. J., Devol, A., Krembs, C. and
- Maloy, C.: The combined effects of ocean acidification, mixing, and respiration on pH and
 carbonate saturation in an urbanized estuary, Estuar. Coast. Shelf Sci., 88(4), 442–449,
 doi:10.1016/j.ecss.2010.05.004, 2010.
- 1028 Feely, R. A., Alin, S. R., Carter, B., Bednaršek, N., Hales, B., Chan, F., Hill, T. M., Gaylord, B.,
- 1029 Sanford, E., Byrne, R. H., Sabine, C. L., Greeley, D. and Juranek, L.: Chemical and biological
- impacts of ocean acidification along the west coast of North America, Estuar. Coast. Shelf Sci.,
 183, 260–270, doi:10.1016/j.ecss.2016.08.043, 2016.
- Gray, S. E. C., DeGrandpre, M. D., Moore, T. S., Martz, T. R., Friederich, G. E. and Johnson, K.
 S.: Applications of in situ pH measurements for inorganic carbon calculations, Mar. Chem., 125,
 82–90, doi:10.1016/j.marchem.2011.02.005, 2011.
- Harris, K.: Aragonite saturation state dynamics in a coastal upwelling zone, Geophys. Res. ...,
 40(April), 2720–2725, doi:10.1002/grl.50460, 2013.
- 1037 Hauri, C., Gruber, N., Vogt, M., Doney, S. C., Feely, R. A., Lachkar, Z., Leinweber, a.,
- McDonnell, a. M. P. and Munnich, M.: Spatiotemporal variability and long-term trends of ocean
 acidification in the California Current System, Biogeosciences, 10(1), 193–216, doi:10.5194/bg1040 10-193-2013, 2013.
- 1041 van Heuven, S. M. A. C., Pierrot, D., Rae, J. W. B., Lewis, E. and Wallace, D. W. .: MATLAB
- 1042 Program Developed for CO₂ System Calculations. ORNL/CDIAC-105b., ORNL/CDIAC-105b.
- 1043 Carbon Dioxide Inf. Anal. Center, Oak Ridge Natl. Lab. U.S. Dep. Energy, Oak Ridge,
- 1044 Tennessee, doi:10.3334/CDIAC/otg.CO2SYS_MATLAB_v1.1, 2011.
- 1045 Hofmann, G. E., Smith, J. E., Johnson, K. S., Send, U., Levin, L. A., Micheli, F., Paytan, A.,
- 1046 Price, N. N., Peterson, B., Takeshita, Y., Matson, P. G., Crook, E. D., Kroeker, K. J., Gambi, M.
- 1047 C., Rivest, E. B., Frieder, C. A., Yu, P. C. and Martz, T. R.: High-Frequency Dynamics of Ocean
- 1048 pH: A Multi-Ecosystem Comparison, edited by W.-C. Chin, PLoS One, 6(12), e28983,
- 1049 doi:10.1371/journal.pone.0028983, 2011.

- 1050 Johnson, K. M., Dickson, A. G., Eischeid, G., Goyet, C., Guenther, P., Key, R. M., Millero, F. J.,
- 1051 Purkerson, D., Sabine, C. L., Schottle, R. G., Wallace, D. W. R., Wilke, R. J. and Winn, C. D.:
- 1052 Coulometric total carbon dioxide analysis for marine studies: assessment of the quality of total
- 1053 inorganic carbon measurements made during the US Indian Ocean CO₂ Survey 1994–1996, Mar.
- 1054 Chem., 63(1–2), 21–37, doi:10.1016/S0304-4203(98)00048-6, 1998.
- 1055 Keyzers, M.: Quality Assurance Project Plan: Puget Sound Total Alkalinity and Dissolved
- 1056 Inorganic Carbon Pilot Project, Olympia, Washington. [online] Available from:
- 1057 https://fortress.wa.gov/ecy/publications/documents/1403116.pdf, 2014.
- 1058 Keyzers, M.: Puget Sound Total Alkalinity and Dissolved Inorganic Carbon Pilot Project:
- 1059 Feasibility Report, Olympia, Washington. [online] Available from:
- 1060 https://fortress.wa.gov/ecy/publications/documents/1603032.pdf, 2016.
- 1061 Lewis, E. and Wallace, D. W. R.: MATLAB Program Developed for CO₂ System Calculations.
- 1062 ORNL/CDIAC-105., Carbon Dioxide Inf. Anal. Center, Oak Ridge Natl. Lab. U.S. Dep. Energy,
- 1063 Oak Ridge, Tennessee, 1998.
- Liu, X., Patsavas, M. C. and Byrne, R. H.: Purification and characterization of meta-cresol purple for spectrophotometric seawater pH measurements., Environ. Sci. Technol., 45(11),
- 1066 4862–8, doi:10.1021/es200665d, 2011.
- 1067 Lueker, T. J., Dickson, A. G. and Keeling, C. D.: Ocean pCO_2 calculated from dissolved
- 1068 inorganic carbon, alkalinity, and equations for K_1 and K_2 : validation based on laboratory 1069 measurements of CO₂ in gas and seawater at equilibrium, Mar. Chem., 70(1–3), 105–119,
- 1070 doi:10.1016/S0304-4203(00)00022-0, 2000.
- 1071 Martin, W. D. and MacCready, P.: Influence of large-scale tidal asymmetry on subtidal dynamics
- 1072 in the western Strait of Juan de Fuca, J. Geophys. Res., 116(C2), C02009,
- 1073 doi:10.1029/2010JC006363, 2011.
- 1074 Martz, T., Mclaughlin, K. and Weisberg, S. B.: California Current Acidification Network Best
- 1075 Practices for autonomous measurement of seawater pH with the Honeywell Durafet pH sensor,
- 1076 [online] Available from: file:///C:/Users/fassbender/Downloads/CCAN Durafet Best Practices
- 1077 Manual (1).pdf, 2015.
- 1078 McElhany, P. and Shallin Busch, D.: Appropriate *p*CO₂ treatments in ocean acidification 1079 experiments, Mar. Biol., 160(8), 1807–1812, doi:10.1007/s00227-012-2052-0, 2013.
- 1080 Millero, F. J.: The Marine Inorganic Carbon Cycle, Chem. Rev., 107(2), 308–341,
- 1081 doi:10.1021/cr0503557, 2007.
- Millero, F. J., Zhang, J.-Z., Lee, K. and Campbell, D. M.: Titration alkalinity of seawater, Mar.
 Chem., 44(2–4), 153–165, doi:10.1016/0304-4203(93)90200-8, 1993.
- Mucci, A.: The solubility of calcite and aragonite in seawater at various salinities, temperatures,
 and one atmosphere total pressure., Am. J. Sci., 283(7), 780–799, doi:10.2475/ajs.283.7.780,
- 1086 1983.
- 1087 Newton, J. A. and Devol, A. H.: Quality Assurance Project Plan: Long-term, High Resolution
- 1088 Marine Water Quality Monitoring in Puget Sound using Profiling Buoys. 2012-2013 Activities.
- 1089 [online] Available from: http://orcabase.ocean.washington.edu/ORCA_QAPP.pdf, 2012.
- 1090 Newton, J. A., Siegel, E. and Albertson, S. L.: Oceanographic Changes in Puget Sound and the

Science Science Science Science Science

- 1091 Strait of Juan de Fuca during the 2000–01 Drought, Can. Water Resour. J., 28(4), 715–728,
- 1092 doi:10.4296/cwrj2804715, 2003.
- 1093 Orr, J. C., Epitalon, J.-M. and Gattuso, J.-P.: Comparison of ten packages that compute ocean
- 1094 carbonate chemistry, Biogeosciences, 12(5), 1483–1510, doi:10.5194/bg-12-1483-2015, 2015.
- 1095 Pelletier, G., Bianucci, L., Long, W., Khangaonkar, T., Mohamedali, T., Ahmed, A. and
- 1096 Figueroa-Kaminsky, C.: Salish Sea Model: Ocean Acidification Module and the Response to
- 1097 Regional Anthropogenic Nutrient Sources. [online] Available from:
- 1098 https://fortress.wa.gov/ecy/publications/SummaryPages/1703009.html, 2017.
- 1099 Pelletier, G., Roberts, M., Keyzers, M. and Alin, S. R.: Seasonal variation in aragonite saturation
- 1100 in surface waters of Puget Sound – a pilot study, Elem Sci Anth., 6(1),
- 1101 doi:http://doi.org/10.1525/elementa.270, 2018.
- 1102 Pfeil, B., Olsen, A., Bakker, D. C. E., Hankin, S., Koyuk, H., Kozyr, A., Malczyk, J., Manke, A.,
- 1103 Metzl, N., Sabine, C. L., Akl, J., Alin, S. R., Bates, N. R., Bellerby, R. G. J., Borges, A. V,
- 1104 Boutin, J., Brown, P. J., Cai, W.-J., Chavez, F. P., Chen, A., Cosca, C. E., Fassbender, A. J.,
- 1105 Feely, R. A., González-Dávila, M., Goyet, C., Hales, B., Hardman-Mountford, N., Heinze, C.,
- 1106 Hood, M., Hoppema, M., Hunt, C. W., Hydes, D. J., Ishii, M., Johannessen, T., Jones, S. D.,
- 1107 Key, R. M., Körtzinger, A., Landschützer, P., Lauvset, S. K., Lefèvre, N., Lenton, A., Lourantou,
- 1108 A., Merlivat, L., Midorikawa, T., Mintrop, L., Miyazaki, C., Murata, A., Nakadate, A., Nakano,
- 1109 Y., Nakaoka, S., Nojiri, Y., Omar, a. M., Padin, X. a., Park, G. H., Paterson, K., Perez, F. F.,
- 1110 Pierrot, D., Poisson, A., Ríos, a. F., Santana-Casiano, J. M., Salisbury, J. E., Sarma, V. V. S. S.,
- 1111 Schlitzer, R., Schneider, B., Schuster, U., Sieger, R., Skjelvan, I., Steinhoff, T., Suzuki, T.,
- 1112 Takahashi, T., Tedesco, K., Telszewski, M., Thomas, H., Tilbrook, B., Tjiputra, J., Vandemark,
- 1113 D. C., Veness, T., Wanninkhof, R., Watson, A. J., Weiss, R., Wong, C. S. and Yoshikawa-Inoue,
- 1114 H.: A uniform, quality controlled Surface Ocean CO₂ Atlas (SOCAT), Earth Syst. Sci. Data,
- 1115 5(1), 125-143, doi:10.5194/essd-5-125-2013, 2013.
- 1116 Raymond, P. A. and Cole, J. J.: Increase in the Export of Alkalinity from North America's 1117 Largest River, Science (80-.)., 301, 2003.
- Raymond, P. A., Oh, N.-H., Turner, R. E. and Broussard, W.: Anthropogenically enhanced 1118
- 1119 fluxes of water and carbon from the Mississippi River, Nature, 451(7177), 449–452,
- 1120 doi:10.1038/nature06505, 2008.
- 1121 Regnier, P., Friedlingstein, P., Ciais, P., Mackenzie, F. T., Gruber, N., Janssens, I. a., Laruelle,
- 1122 G. G., Lauerwald, R., Luyssaert, S., Andersson, A. J., Arndt, S., Arnosti, C., Borges, A. V, Dale,
- 1123 A. W., Gallego-Sala, A., Goddéris, Y., Goossens, N., Hartmann, J., Heinze, C., Ilyina, T., Joos,
- 1124 F., LaRowe, D. E., Leifeld, J., Meysman, F. J. R., Munhoven, G., Raymond, P. a., Spahni, R.,
- 1125 Suntharalingam, P. and Thullner, M.: Anthropogenic perturbation of the carbon fluxes from land 1126
- to ocean, Nat. Geosci., 6(8), 597-607, doi:10.1038/ngeo1830, 2013.
- 1127 Revelle, R. and Suess, H. E.: Carbon dioxide exchange between atmosphere and ocean and the
- 1128 question of an increase of atmospheric CO₂ during the past decades, Tellus, 9(1), 18–27,
- 1129 doi:10.1111/j.2153-3490.1957.tb01849.x, 1957.
- 1130 Sabine, C. L., Feely, R. A., Gruber, N., Key, R. M., Lee, K., Bullister, J. L., Wanninkhof, R.,
- 1131 Wong, C. S., Wallace, D. W., Tilbrook, B., Millero, F. J., Peng, T.-H., Kozyr, A., Ono, T. and
- 1132 Rios, A. F.: The Oceanic Sink for Anthropogenic CO₂, Science (80-.)., 305(5682), 367–371,
- 1133 doi:10.1126/science.1097403, 2004.

Science Scienc

- 1134 Sabine, C. L., Hankin, S., Koyuk, H., Bakker, D. C. E., Pfeil, B., Olsen, A., Metzl, N., Kozyr, A.,
- 1135 Fassbender, A. J., Manke, A., Malczyk, J., Akl, J., Alin, S. R., Bellerby, R. G. J., Borges, A. V,
- 1136 Boutin, J., Brown, P. J., Cai, W.-J., Chavez, F. P., Chen, A., Cosca, C. E., Feely, R. A.,
- 1137 González-Dávila, M., Goyet, C., Hardman-Mountford, N., Heinze, C., Hoppema, M., Hunt, C.
- 1138 W., Hydes, D. J., Ishii, M., Johannessen, T., Key, R. M., Körtzinger, A., Landschützer, P.,
- 1139 Lauvset, S. K., Lefèvre, N., Lenton, A., Lourantou, A., Merlivat, L., Midorikawa, T., Mintrop,
- 1140 L., Miyazaki, C., Murata, A., Nakadate, A., Nakano, Y., Nakaoka, S., Nojiri, Y., Omar, a. M.,
- 1141 Padin, X. a., Park, G. H., Paterson, K., Perez, F. F., Pierrot, D., Poisson, A., Ríos, a. F.,
- 1142 Salisbury, J. E., Santana-Casiano, J. M., S. Sarma, V. V. S., Schlitzer, R., Schneider, B.,
- 1143 Schuster, U., Sieger, R., Skjelvan, I., Steinhoff, T., Suzuki, T., Takahashi, T., Tedesco, K.,
- 1144 Telszewski, M., Thomas, H., Tilbrook, B., Vandemark, D. C., Veness, T., Watson, A. J., Weiss,
- 1145 R., Wong, C. S. and Yoshikawa-Inoue, H.: Surface Ocean CO₂ Atlas (SOCAT) gridded data
- 1146 products, Earth Syst. Sci. Data, 5(1), 145–153, doi:10.5194/essd-5-145-2013, 2013.
- 1147 Somero, G. N., Beers, J. M., Chan, F., Hill, T. M., Klinger, T. and Litvin, S. Y.: What Changes
- 1148 in the Carbonate System, Oxygen, and Temperature Portend for the Northeastern Pacific Ocean:
- 1149 A Physiological Perspective, Bioscience, 66(1), 14–26, doi:10.1093/biosci/biv162, 2016.
- 1150 Sundquist, E. T., Plummer, L. N. and Wigley, T. M. L.: Carbon dioxide in the ocean surface: The
- 1151 homogeneous buffer factor, Science (80-.)., 204(4398), 1203–1205,
- 1152 doi:10.1126/science.204.4398.1203, 1979.
- 1153 Sutton, A. J., Sabine, C. L., Maenner-Jones, S., Lawrence-Slavas, N., Meinig, C., Feely, R. A.
- 1154 A., Mathis, J. T. T., Musielewicz, S., Bott, R., McLain, P. D., Fought, H. J. and Kozyr, A.: A
- high-frequency atmospheric and seawater pCO_2 data set from 14 open-ocean sites using a
- moored autonomous system, Earth Syst. Sci. Data, 6(2), 353–366, doi:10.5194/essd-6-353-2014,
 2014.
- 1158 Sutton, A. J., Sabine, C. L., Feely, R. A., Cai, W., Cronin, M. F., McPhaden, M. J., Morell, J. M.,
- 1159 Newton, J. A., Noh, J., Ólafsdóttir, S. R., Salisbury, J. E., Send, U., Vandemark, D. C. and
- 1160 Weller, R. A.: Using present-day observations to detect when anthropogenic change forces
- 1161 surface ocean carbonate chemistry outside preindustrial bounds, Biogeosciences, 13(17), 5065–
- 1162 5083, doi:10.5194/bg-13-5065-2016, 2016.
- 1163 Takahashi, T., Broecker, W. S., Werner, S. R. and Bainbridge, A. E.: Carbonate chemistry of the
- 1164 surface waters of the worlds ocean, in Isotope marine Chemistry, edited by K. S. Edward D.
- 1165 Goldberg, Yoshio Horibe, pp. 291–326, Geochemistry Research Association., 1980.
- 1166 Takahashi, T., Goddard, J. G. and Chipman, D. W.: Seasonal variation of CO₂ and nutrients in
- the high-latitude surface oceans: A comparative study, Global Biogeochem. Cycles, 7(4), 843–
 878, 1993.
- 1169 Takahashi, T., Sutherland, S. C., Wanninkhof, R., Sweeney, C., Feely, R. A., Chipman, D. W.,
- 1170 Hales, B., Friederich, G. E., Chavez, F. P., Sabine, C. L., Watson, A. J., Bakker, D. C. E.,
- 1171 Schuster, U., Metzl, N., Yoshikawa-Inoue, H., Ishii, M., Midorikawa, T., Nojiri, Y., Körtzinger,
- 1172 A., Steinhoff, T., Hoppema, M., Olafsson, J., Arnarson, T. S., Tilbrook, B., Johannessen, T.,
- 1173 Olsen, A., Bellerby, R., Wong, C. S., Delille, B., Bates, N. R. and de Baar, H. J. W.:
- 1174 Climatological mean and decadal change in surface ocean pCO_2 , and net sea-air CO₂, flux over
- 1175 the global oceans, Deep. Res. II, 56(8–10), 554–577, doi:10.1016/j.dsr2.2008.12.009, 2009.
- 1176 Takahashi, T., Sutherland, S. C., Chipman, D. W., Goddard, J. G. and Ho, C.: Climatological

Searth System Discussion Science Solutions Data

- 1177 distributions of pH, pCO₂, total CO₂, alkalinity, and CaCO₃ saturation in the global surface
- 1178 ocean, and temporal changes at selected locations, Mar. Chem., 164, 95–125,
- 1179 doi:10.1016/j.marchem.2014.06.004, 2014.
- 1180 Takeshita, Y., Frieder, C. A., Martz, T. R., Ballard, J. R., Feely, R. A., Kram, S., Nam, S.,
- 1181 Navarro, M. O., Price, N. N. and Smith, J. E.: Including high-frequency variability in coastal
- 1182 ocean acidification projections, Biogeosciences, 12(19), 5853–5870, doi:10.5194/bg-12-58531183 2015, 2015.
- 1184 UNESCO: Protocols for the Joint Global Ocean Flux Study (JGOFS) Core Measurements, IOC
- 1185 Manual and Guides 29. [online] Available from:
- 1186 http://unesdoc.unesco.org/images/0009/000997/099739eo.pdf, 1994.
- 1187 Uppström, L. R.: The boron-chlorinity ratio of deep seawater from the Pacific Ocean, Deep. Res.
 1188 Part I, 21, 161–162, 1974.
- 1189 Wahl, M., Saderne, V. and Sawall, Y.: How good are we at assessing the impact of ocean
- 1190 acidification in coastal systems? Limitations, omissions and strengths of commonly used
- 1191 experimental approaches with special emphasis on the neglected role of fluctuations, Mar.
- 1192 Freshw. Res., 67(1), 25–36, doi:10.1071/MF14154, 2016.
- 1193 Waldbusser, G. G. and Salisbury, J. E.: Ocean acidification in the coastal zone from an
- 1194 organism's perspective: multiple system parameters, frequency domains, and habitats., Ann.
- 1195 Rev. Mar. Sci., 6, 221–47, doi:10.1146/annurev-marine-121211-172238, 2014.
- 1196 Weisberg, S. B., Bednaršek, N., Feely, R. A., Chan, F., Boehm, A. B., Sutula, M., Ruesink, J. L.,
- Hales, B., Largier, J. L. and Newton, J. A.: Water quality criteria for an acidifying ocean:
- 1198 Challenges and opportunities for improvement, Ocean Coast. Manag., 126(June), 31–41,
- 1199 doi:10.1016/j.ocecoaman.2016.03.010, 2016.
- 1200 Wong, P. P., Losada, I. J., Gattuso, J.-P., Hinkel, J., Khattabi, A., McInnes, K. L., Saito, Y. and
- 1201 Sallenger, A.: Coastal ecosystems and low-lying areas, in Climate Change 2014:
- 1202 Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of
- 1203 Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate
- 1204 Change, edited by C. B. Field, V. R. Barros, D. J. Dokken, K. J. Mach, M. D. Mastrandrea, T. E.
- 1205 Bilir, M. Chatterjee, K. L. Ebi, Y. O. Estrada, R. C. Genova, B. Girma, E. S. Kissel, A. N. Levy,
- 1206 S. MacCracken, P. R. Mastrandrea, and L.L. White, pp. 361–409, Cambridge University Press,
- 1207 Cambridge, United Kingdom and New York, NY, USA., 2014.